• Title/Summary/Keyword: Flux linkage model

Search Result 68, Processing Time 0.025 seconds

Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults (고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석)

  • Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

Sensorless Control of PM Synchronous Motor Using Adaptive Observer (적응 관측기를 이용한 영구자석 동기전동기의 센서리스 제어)

  • 홍찬호;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.60-63
    • /
    • 1997
  • A new approach to the position sensor elimination of PM synchronous motor drives is presented in this study. Using the position sensing characteristics of PMSM itself, the actual rotor position as well as the machine speed can be estimated by adaptive flux observer and used as the feedback signal for the vector controlled PMSM drive. The adaptive speed estimation is achieved by model reference adaptive technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. In order to verify the effectiveness of the proposed scheme, computer simulations are carried out for the actual parameters of a PM synchronous motor and the results well demonstrate that the proposed scheme provides a good estimation value of the rotor speed without mechanical sensor. It is also shown that the actual rotor position as well as the machine speed can be achieved under the variation of the magnet flux linkage. Since the flux linkages are estimated by the adaptive flux observer and used for the identification of the rotor speed, robust estimation of the rotor speed can be performed.

  • PDF

A Study on the Speed Sensorless Vector Control for Induction Motor Adaptive Control Method using a High Frequency Boost Chopper of Hybrid Type Piezoelectric Transformer (하이브리드형 압전 변압기의 고주파 승압 초퍼를 이용한 적응제어기법 유도전동기 속도 센서리스 벡터제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Song-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.332-345
    • /
    • 2013
  • In this paper, recently, it is described to the piezoelectric transformer technology develops, because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, flux linkage, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. A rotor speed identification method of induction motor based on the theory of flux model reference adaptive system(FMRAS). The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the model are introduced to perform accurate rotor speed estimation. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM techniuqe and DC-DC converter. High speed calculation and processing for vector control is carried out by digital signal one chip microprocessor. Validity of the proposed control method is verified through simulation and experimental results.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

Comparison and Analysis of Linear Oscillatory Actuator According to Mover Type (왕복운동 리니어 액추에이터의 가동자 형태에 따른 전자기적 특성해석 및 비교)

  • 장석명;최장영;정상섭;이성호;조한욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.213-223
    • /
    • 2004
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. The advantages of such a motor are that it has a good linearity and has no need of such mechanical energy conversion parts, which change rotary motion into linear motion, as screws, gears, chains etc In this paper, two structures of LOA are analyzed. One is the moving-coil type LOA and the other is moving-magnet type LOA. Two types of LOA are analyzed, with reference to the following parameters as variables: magnetic field, flux linkage, motor thrust and back emf. These variables are derived by the use of analytical method in terms of two-dimensional rectangular coordinate system. The maximum values of thrust according to such design parameters as air-gap length and magnet height for each model is also represented. The results are validated extensively by comparison with finite element method. In particular, we experiment moving-coil LOA which is already manufactured and confirm that the experimental results are shown in good agreement with analysis through the comparison of between analytical and experimental results

Speed Sensorless Vector Control of Induction Motor using dSPACE (dSPACE를 이용한 유도전동기의 속도센서리스 벡터제어)

  • Lee, Dong-Min;Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.163-165
    • /
    • 2006
  • This paper presents a implementation of speed sensorless vector control algorithm of induction motor using MATLAB/SIMULINK amd dSPACE DSl104 R&D board. The estimation of rotor flux linkage and rotor speed is carried out using model reference adaptive system(MRAS) method. Estimated rotor speed is used to speed controller of induction motor. Simulation results are presented to confirm speed sensorless vector control algorithm.

  • PDF

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Dynamic Characteristic Analysis of Permanent Magnet Type Linear Synchronous Motor using FEM (유한요소법을 이용한 영구자석형 선형동기전동기의 동특성해석에 관한 연구)

  • Shim, Jang-Ho;Jung, In-Soung;Yoon, Sang-Baeck;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.165-167
    • /
    • 1997
  • This paper centers on a method which can reduce calculating time and maintain accuracy of whole model FE analysis with one pole model for short secondary Permanent Magnet Linear Synchronous Motor(PMLSM). We use one pole model which considers the number of pole of stator and mover respectively in order to replace whole model to one pole model and calculate flux linkage and back e.m.f. with accuracy. Also we verify the validity of proposed method with comparision of results of whole and one pole model.

  • PDF

A new Instantaneous Torque Control of PM Synchronous Motor for High Performance Direct Drive Systems

  • Chung, Se-Kyo;Kim, Hyun-Soo;Kim, Chang-Gyun;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.13-16
    • /
    • 1996
  • A new instantaneous torque control technique is presented for a high performance control of a permanent magnet synchronous motor. Using the model reference adaptive system technique, the linkage flux of the motor is estimated and the torque is instantaneously controlled by the proposed torque controller combining with a variable structure control and space vector PWM. The proposed torque control provides the advantage of reducing the torque pulsation caused by the flux harmonics. This control strategy is applied to the high torque PM synchronous motor drives for direct drive systems and is implemented by using a software of the DSP TMS320C30. The experiments are carried out for this system and the results well demonstrate the effectiveness of the proposed control.

  • PDF

A NEW ALALYTICAL MODEL AND SENSORLESS APPROACH FOR SWITCHED RELUCTANCE MOTORS

  • Saha, S.;Kosaka, T.;Matsui, N.;Takeda, Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.310-315
    • /
    • 1998
  • In this paper a new analytical model for the non-linear flux-linkage/current characteristics of the switched reluctance motors at different rotor positions is proposed. The model has been successfully verified by the simulation and the experimental results of the instantaneous current waveforms and the average torque values in both single pulse and multiple pulse operation of the motor. The uniqueness of the model lies in its defining a simple algorithm for determining the rotor position ($\theta$). Hence, sensorless operation of the motor can be easily implemented with the aid of this model.

  • PDF