• Title/Summary/Keyword: Flux coil

Search Result 359, Processing Time 0.027 seconds

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

An Analysis of the Characteristics of Glass Beads from the Joseon Dynasty Using Non-destructive Analysis (비파괴 분석을 활용한 조선시대 유리구슬의 특성 분석)

  • Lee Sujin;Kim Gyuho
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.71-88
    • /
    • 2023
  • This paper examined the visible characteristics and chemical composition of glass beads from the Joseon Dynasty as well as the associations thereof. It also explored the characteristics and uses of glass beads by region. This study covered a total of 1,819 pieces excavated from 25 locations in the Gyeonggi, Chungcheong, and Gyeongsang regions, of which 537 pieces were analyzed for their chemical composition. Glass beads of the Joseon Dynasty take a variety of shapes such as a Round, Coil, Floral, Segmented, Flat, Oval, and Calabash. Colors vary from shades of brown (brown, lemon yellow) and shades of blue (Bluish-Green, greenish-Blue, Purple-Blue) to shades of white (colorless, white) and shades of green (Green, Greenish-Blue, Greenish-Brown). Brown accounts for the largest percentage, followed by Bluish-Green, greenish-Blue. It was identified that Drawing technique was the most common glass bead production technique of the Joseon Dynasty. Potassium oxide (K2O) was the most common flux agent for glass beads, while the potash glass and mixed alkali glass groups account for the largest quantity. The choice of stabilizers depended on the type of flux agents used, but the most common were calcium oxide (CaO) and aluminum oxide (Al2O3). The potash glass and potash lead glass groups are high in CaO and low in Al2O3, the mixed alkali glass group is high in CaO, and the lead glass group is low in CaO. In terms of the association between color and shape, most of the beads with shade of brown and blue have round shapes of brown and blue have spherical shapes, while the coil shape is prominent in blue beads. A high percentage of green and colorless beads also take the shape of a coil, while white beads in general have a floral shape. In terms of the association between shape and chemical composition, round, floral and segmented shapes account for a high percentage of the potash glass group, while coil and flat shapes are common in the mixed alkali glass group. This paper also analyzed the colorants for each color based on the association between color and chemical composition. Iron (Fe) was used as the colorant for brown and white, and titanium (Ti) and iron were used for light yellow. Purple-Blue was produced by by cobalt (Co), and greenish-Blue, Bluish-Green, green, Greenish-Blue were produced by iron and copper (Cu). Colorless beads had a generally low colorant content.

Field Analysis in the Ferrite Core at 100 kHz Band Magnetic Field (100 kHz 대역의 자계 환경내(內)에서의 페라이트 코어의 계(界) 해석)

  • Koo, Bon-Chul;Yoo, Jae-Sung;Kim, Mi-Ja;Gimm, Yoon-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.977-983
    • /
    • 2007
  • Recently, the number of systems which utilize wireless power transmission to a receiving module in a short distance is increasing. For efficient use of receiving space, coils are wound around the ferrite core to produce electromotive force(emf) in suppling power by wireless transmission. This paper analyzed the magnetic flux density distribution in the ferrite core in magnetic field environment which is uniformly oriented along to a single axis at 125kHz. For numerical analysis, Ansoft Maxwell which is applying the FEM(Finite Element Method) method was used. We studied the variations of the gathered magnetic fluxes to the changes of the relative permeabilities of the ferrite cores. Also we calculated the magnetic flux variation by shaving the ferrite core off for the groove of coil winding. Results showed that using a small ferrite core in magnetic field at 100kHz band can increase the amount of magnetic flux $3{\sim}4 times$ than without the core. The magnetic flux decreased 23% by shaving the core 0.5 mm on the periphery of 4.75 mm radius core with the relative permeability 800.

Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions (자속구속형 초전도 전류제한기의 철심조건에 따른 특성)

  • Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Cho, Guem-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.38-45
    • /
    • 2006
  • The superconducting fault current limiters(SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the opal-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.

Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes (다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석)

  • Lee, Ji-Ho;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Kim, Jin-Sub;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Simulation study of magnetorheological testing cell design by incorporating all basic operating modes

  • Mughni, Mohd J.;Mazlan, Saiful A.;Zamzuri, Hairi;Yazid, Izyan I.M.;Rahman, Mohd A.A.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.901-916
    • /
    • 2014
  • Magnetorheological (MR) fluid is one of the field-responsive fluids that is of interest to many researchers due to its high yield stress value, which depends on the magnetic field strength. Similar to electrorheological (ER) fluid, the combination of working modes is one of the techniques to increase the performance of the fluids with limited focus on MR fluids. In this paper, a novel MR testing cell incorporated with valve, shear and squeeze operational modes is designed and constructed in order to investigate the behaviour of MR fluid in combined mode. The magnetic field distribution in the design concept was analyzed using finite element method in order to verify the effective areas of each mode have the acceptable range of flux density. The annular gap of valve and shear were fixed at 1 mm, while the squeeze gap between the parallel circular surfaces was varied up to 20 mm. Three different coil configurations, which were made up from 23 SWG copper wires were set up in the MR cell. The simulation results indicated that the magnetic field distributed in the squeeze gap was the highest among the other gaps with all coils were subjected to a constant applied current of 1 A. Moreover, the magnetic flux densities in all gaps were in a good range of magnitude based on the simulations that validated the proposed design concept. Hence, the 3D model of the MR testing cell was designed using Solidworks for manufacturing processes.

A Visual Study on Nucleate Boiling Phenomena in a Closed Two-Phase Thermosyphon (밀폐형 2상 열사이폰내의 비등현상에 관한 가시화 연구)

  • 강환국;오광헌;김철주;박이동;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.185-198
    • /
    • 1995
  • This is an experimental study conducted to visualize the nucleate boiling phenomena and flow regimes occurring inside the liquid pool in a closed two-phase thermosyphon. To meet this purpose, an annular-type thermosyphon was designed and manufactured using a glass tube and a stainless steel tube, being assembled axisymmetrically. The heat to be supplied to the working fluid is generated within a very thin layer of stainless steel tube wall by applying a high frequency electromagnetic field through the induction coil, axisymmetrically set around the evaporator zone. Some important results were as follows ; 1) Considering the structural complexity of the tested thermosyphon, it showed good performance for the range of heat flux 2< q" <25kW/$m^2$ and saturation vapor pressure, 0.1<Pv<1.1bar 2) different type of nucleating boiling regimes were observed as described below, -Pulse boiling regime : Flow pattern changed cyclically with time during 1 cycle of pulse boiling process. The onset of Nucleation was followed by expulsive growing of vapor bubble, resulting in the so called blow-up phenomenon, massive expulsion of large amount of liquid around the bubble. -Transient : Some spherical vapor bobbles were observed growing out from 2~3 nucleating sites, that was dispersed at the lower part of the heated tube wall in the liquid pool. But the rest upper region above the nucleating sites were filled with churns or bubbles of vapor. -Continuous nucleate boiling regime : The whole zone of evaporator was filled with lots of spherical vapor bubbles, and the bubbles showed tendency to decrease in diameter as the heat flux increased.ased.

  • PDF

Development of Electronic Limit Switch for the Drive Unit of Incore Detector System Application (노내 핵계측 계통 구동기기의 전자식 한계스위치 개발)

  • 박종범;양승권;이상효
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, we study a cause of malfunction of switch to control drive motor in DFMS(Digital Flux Mapping System) which can measure incore neutron flux of the nuclear plant, and develope a method to solve this problem. DFMS has the type of generating contact signal by mechanical switch lever, which is operated whenever thimble detector inserted or withdrawed through thimble Guide Tube. However the characteristics of the lever tend to be changed by mechanical degrade or bad environment and the lever finally generates errotic contact signal. Therefore we installed electric coil ass'yin the outside of Guide Tube instead of mechanical switch assy's. In addition we applied resonance effect to control circuit and installed condenser in the input of power supply to protect noise and interference. After completion of this improvement, we tested this improved device repetitively under the various conditions. In conclusion, we identified the generation of the desired contact signal and the prevention of detector failure through plant surveillance test during normal plant operation.

  • PDF

Construction of AC-DC Magnetic Field Standard Systems and Results of International Key Comparison (직류-교류 자기장 표준 시스템 제작 및 국제비교 결과)

  • Park, Po-Gyu;Kim, Young-Gyun
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.201-206
    • /
    • 2004
  • The AC-DC magnetic field standard systems were constructed for the calibration of magnetometers for low magnetic field and the tests for low magnetic field characteristics of sensors and materials. In the range of 1 mT, the expanded uncertainty of dc is 8${\times}$10$\^$-6/, ac uncertainties are 0.16% in 0.1~1 kHz, 0.26% in 1~5 kHz, and 0.44% in 5~20 kHz. We have been participated in international key comparison(KC) to achieve the equality and the mutual agreement between standard institutes for the results of calibrations and tests. KRISS participating in ac-dc magnetic flux density of KC got equal level of uncertainty results compare with the advanced nations. It confirm that measurement ability of magnetic flux density is high level in the world.

PERFORMANCE AND DESIGN OF A SINGLE-PHASE LINEAR SYNCHRONOUS GENERATOR USING FINITE ELEMENT METHOD

  • Eid, Ahmad M.;Kim, Sung-Jun;Kang, Ju-Sung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.95-99
    • /
    • 2005
  • This paper presents a general proposal to design and calculate the performance of a tubular permanent magnet linear generator treated here on the basis of the Finite Element Method. Optimizing the linear generator dimensions reduces the cogging force, which occurs due to the interaction between stator teeth and the permanent magnets. The generated AC voltage is analyzed and evaluated for both no load and load cases to take the armature reaction effects on the air gap flux density. A repetitive routine is followed to calculate the output AC voltage from the change of flux and the speed of the single-phase linear generator. The AC output voltage is calculated for different resistive loads, and hence, the linear generator load characteristic is obtained. The designed linear generator is capable to generate an output power of 5.3kW with AC output voltage of 222V with an efficiency of 96.8% at full load of 23.8A. The full load current is chosen based on the thermal properties of the coil wire insulations.

  • PDF