• Title/Summary/Keyword: Flux Measurements

Search Result 421, Processing Time 0.026 seconds

Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.204-210
    • /
    • 2005
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

Measurements of In-phantom Neutron Flux Distribution at the HANARO BNCT Facility

  • Kim Myong Seop;Park Sang Jun;Jun Byung Jin
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.203-209
    • /
    • 2004
  • In-phantom neutron flux distribution is measured at the HANARO BNCT irradiation facility. The measurements are performed with Au foil and wires. The thermal neutron flux and Cd ratio obtained at the HANARO BNCT facility are $1.19{\times}10^9\;n/cm^{2}s$ and 152, respectively, at 24 MW reactor power. The measured in-phantom neutron flux has a maximum value at a depth of 3 mm in the phantom and then decreases rapidly. The maximum flux is about $25\%$ larger than that of the phantom surface, and the measured value at a depth of 22 mm in the phantom is about a half of the maximum value. In addition, the neutron beam is limited well within the aperture of the neutron collimator. The two-dimensional in-phantom neutron flux distribution is determined. Significant neutron irradiation is observed within 20 mm from the phantom surface. The measured neutron flux distribution can be utilized in irradiation planning for a patient.

ANALYSIS OF ADHESIVE TAPE ACTIVATION DURING REACTOR FLUX MEASUREMENTS

  • Bignell, Lindsey Jordan;Smith, Michael Leslie;Alexiev, Dimitri;Hashemi-Nezhad, Seyed Reza
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.93-98
    • /
    • 2008
  • Several adhesive tapes have been studied in terms of their suitability for securing gold wires into positions for neutron flux measurements in the reactor core and irradiation facilities surrounding the core of the Open Pool Australian Light water (OPAL) reactor. Gamma ray spectrometry has been performed on each irradiated tape in order to identify and quantify activated components. Numerous metallic impurities have been identified in all tapes. Calculations relating to both the effective neutron shielding properties of the tapes and the error in measurement of the $^{198}Au$ activity caused by superfluous activity due to residual tape have been made. The most important identified effects were the prolonged cooling times required before safe enough levels of radioactivity to allow handling were reached, and extra activity caused by residual tape when measured with an ionisation chamber. Knowledge of the most suitable tape can allow a minimal contribution due to these effects, and the use of gamma spectrometry in preference to ionisation chamber measurements of the flux wires is shown to make all systematic errors due to the tape completely negligible.

MEASUREMENT OF LINE PROFILE STEEPNESS AS A POSSIBLE TOOL FOR DEDUCING A TOTAL MAGNETIC FLUX NEAR A NEUTRAL LINE

  • GRIGORYEV V. M.;KOBANOV N. I.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.233-234
    • /
    • 1996
  • For obtaining estimates of a total magnetic flux, we propose to use measurements of ${\partial}I/{\partial}{\lambda}$. obtained by a modulation method which is formally identical to Stokes V-parameter measurements. In this case the polarization is not analyzed. It is advisable to use in measurements two parts of the spectral line wing.

  • PDF

AC Loss Measurement and Analysis of Ag-sheathed Bi-2223 Conductors in Terms of Eddy Currents and Flux Creep

  • Jang, Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.211-215
    • /
    • 2003
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb] : Sr : Ca : Cu :O = 2:2:2:3) tapes [one untwisted (Tape I, twist-pitch of $\infty$ mm) and the other with a twist-pitch of 8mm (Tape II) ] were measured and compared. These samples, produced by the powder-in-tube (PIT) method, are multi-filamentary and have a Ag/Au and Ag matrix, respectively. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation.

Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding (TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향)

  • Oh, Dong-Soo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

Evaluation of DMS Flux and Its Conversion to SO(sub)2 in Tropical ACE 1 Marine Boundary Layer

  • Shon, Zang-Ho;Taekyung Yoon;Kim, Jungkwon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.139-148
    • /
    • 2000
  • A mass balance/photochemical modeling approach was used to evaluate the sea-to-air dimethyl sulfide (DMS) fluxes in tropical regions and part of the Southern Ocean. The flux determinations were based on 10 airborne observations by ACE 1 transit flights (i.e., Flights 4-9 and 29-32). The DMS flux values for the tropical regions ranged from 1.0 to 7.4 $\mu$mole/$m^2$/day with an average estimate of 4.2$\pm$2.3 $\mu$mole/$m^2$/day. The seasonal variations in the DMS flux predicted for the equatorial Pacific Ocean based on atmospheric DMS measurements were not entirely consistent with those derived from seawater DMS measurements were not entirely consistent with those derived from seawater DMS measurements reported in previous literature. Inhomogeneities in the DMS flux field were found to cause significant shifts in the atmospheric DMS levels even in the same sampling location. Accordingly, no definitive statement can be made at this stage regarding systematic differences or agreements in the DMS flux estimates from the two approaches. Moreover, this study strongly suggests that DMS oxidation is the most likely dominant source of SO$_2$in tropical regions, which is also supported by another set of compiled observations. Finally, these SO$_2$observations indicate that, when significant data was available for both the boundary and buffer layers, the vertical SO$_2$gradient between these two zones was primarily negative.

  • PDF

Two Different Enclosure-based Measurements Applications for Trace Gas Surface Emission and Sensitivity Analysis for Soil NO Emission by Using a Flow-through Dynamic System (지표 미량기체 방출에 대한 두 가지 다른 형태의 Enclosure 기반 측정 방법의 응용 및 Flow-through Dynamic System을 이용한 토양 NO 방출의 민감도 분석)

  • Kim, Deug-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.170-178
    • /
    • 2007
  • Rapid increases in the concentrations of greenhouse gases and many other chemically important trace gases have occurred over the last several centuries. For understanding the roles of these important gases in global change, it is essential to identify their sources and sinks, to characterize biogenic gas fluxes between the biosphere and atmosphere, and to understand the processes that control them. In this paper, enclosure-based measurements are described in a practical manner for field experiments. Theoretical reviews of mass balance equation in the enclosure and sensitivity of the flow-through dynamic flux chamber technique are presented; specifically for the case of NO flux measurements from soil surface. The physical system and theory behind the flow-through dynamic flux chamber method are examined. New calculation flux formula was introduced by considering NO chemical loss on chamber wall and uncertainties of the NO flux calculation were discussed.