• Title/Summary/Keyword: Flux Estimation

Search Result 627, Processing Time 0.029 seconds

Radiative Role of Clouds on the Earth Surface Energy Balance (지표 에너지 수지에 미치는 구름의 복사 역할)

  • Hong, Sung-Chul;Chung, Ii-Ung;Kim, Hyung-Jin;Lee, Jae-Bum;Oh, Sung-Nam
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

Re-estimation of Settling Velocity Profile Equations for Muddy Cohesive Sediments in West Coasts (서해안 갯벌 점착성 퇴적물 침강속도 곡선식의 재검토)

  • Hwang K.-N.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2002
  • Quantifying the settling velocities of fine-cohesive sediments is very essential in the study of ocean pollutions as well as sedimentations. Settling properties of fine-cohesive sediments are influenced largely by aggregation which occurs as a consequence of interparticle collision and cohesion of particles. Since the degree of cohesion of fine-cohesive sediments depends on physico-chemical properties such as grain size distribution, percentage of organic materials, and mineralogical compositions, and these physico-chemical properties varies regionally, the settling velocities of fine-cohesive sediments for a specific site should be determined through field or laboratory experiment. Recently, settling velocities of fine-cohesive sediments in Saemankeum coasts and Kunsan Estuary have been measured through laboratory experiments. Using these data, the previously proposed well-known settling velocity equations for fine-cohesive sediments are examined and a new equation is developed for better representation of the measured data in this study. The newly developed settling velocity equation is simpler in the form and easier in determining the related coefficients than the previous well-known equations.

  • PDF

Evapotranspiration Estimation by The Eddy-Covariance in The Yongdam Dam Experimental Basin (에디공분산 관측시스템을 이용한 용담댐 시험유역 증발산량 산정연구)

  • Kim, Yong-Kuk;Lee, Hyun-Seok;Chae, Hyo-Seok;Kim, Young-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.274-274
    • /
    • 2012
  • 증발산량 관측은 오랜 기간 연구되어 왔으며, 미기상 관측 시스템의 최적화와 상호 공동비교 실험 및 자료 처리의 일관성을 유지를 위해 한국에는 KoFlux라고 하는 플럭스 네트워크가 2002년 1월에 구축되었다. 이를 시작으로 미기상 관측에 대한 관심이 많은 연구자들이 관측망 구축에 힘쓰고 있으며, 에디공분산 방법을 이용해 증발산량을 산정하고 있다. 에디 공분산 방법은 다른 방법에 비해 연직농도 차이가 적은 산림 위에서의 플럭스 값을 측정 할 수 있으며, 측정 시 식물 환경에 방해를 주지 않는 등의 장점이 있다. 하지만 자료 처리와 품질관리에 있어 연구자의 주관성에 의해 상당 부분 불확실성을 초래한다. 또한 다른 관측지점과의 일관적인 비교를 위해 좌표보정을 수행하며, 일반적으로 바람이 평평한 지역 위로 분다는 가정 하에 이루어진다. 좌표보정은 일반적으로 Planar Fit Rotation방법을 사용하며, 평판 분할은 지형에 따라 12개까지 분할하여 분석한다. 하지만 덕유산 플럭스관측 타워지점처럼 산지 특성이 뚜렷하고 1 m/s이하의 풍속 데이터의 빈도가 큰 경우 평판 분할 수의 제한이 발생한다. 이러한 문제를 해결하기 위해 좌표보정계수산정 방법에 따라 등간격의 평판분할 방법(Scenario A), 주풍향을 고려한 평판분할 방법(Scenario B)과 빈도에 의한 평판분할방법(Scenario C)으로 수행하였다. 또한 각 Scenario는 풍속의 제한 조건에 따라 CASE A(0.5 m/s 이상), CASE B(1.0 m/s이상)로 구분하여 분석하였다. 본 연구를 통해 제안 한 자료처리 절차는 첫째, 바람자료의 빈도 분석을 통한 지역특성 파악 둘째, 풍속제한 조건 설정 셋째, 바람과 수증기의 공분산 계산으로 요약된다. 덕유산 플럭스관측 타워지점의 경우 풍속 제한을 1.0 m/s이상에서 0.5 m/s이상으로 하향 조정하였으며, 평판 분할 방법은 Scenario C의 평판 수 12개를 채택하였다.

  • PDF

Inventory Estimation of 36Cl and 41Ca in Concrete of Kori Unit 1 (고리 1호기의 콘크리트 내 36Cl 및 41Ca의 방사화재고량 평가)

  • Jang, Mee;Lim, Jong Myoung;Kim, Hyun Chul;Kim, Chang-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.121-126
    • /
    • 2019
  • The radionuclide inventory prediction of a nuclear power plant can help establish decommissioning plan by providing information of radiation environment. Accumulated radionuclides in reactors and related facilities after reactor shutdown can be divided into neutron activated materials and contaminated materials. Among the neutron activated radionuclides, $^{36}Cl$ and $^{41}Ca$ are important from the viewpoint of disposal because of its long half-life and physiochemical characteristics. In this research, we calculated the radionuclides of $^{36}Cl$ and $^{41}Ca$ in bioshielding concrete by estimating the neutron flux and cross section using the MCNPX. And we evaluated the inventories of $^{36}Cl$ and $^{41}Ca$ using the activation calculation code ORIGEN2.

Development and verification of a Monte Carlo two-step method for lead-based fast reactor neutronics analysis

  • Yiwei Wu;Qufei Song;Ruixiang Wang;Yao Xiao;Hanyang Gu;Hui Guo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2112-2124
    • /
    • 2023
  • With the rise of economic and safety standards for nuclear reactors, new concepts of Gen-IV reactors and modular reactors showed more complex designs that challenge current tools for reactor physics analysis. A Monte Carlo (MC) two-step method was proposed in this work. This calculation scheme uses the continuous-energy MC method to generate multi-group cross-sections from heterogeneous models. The multi-group MC method, which can adapt locally-heterogeneous models, is used in the core calculation step. This calculation scheme is verified using a Gen-IV modular lead-based fast reactor (LFR) benchmark case. The influence of homogenized patterns, scatter approximations, flux separable approximation, and local heterogeneity in core calculation on simulation results are investigated. Results showed that the cross-sections generated using the 3D assembly model with a locally heterogeneous representation of control rods lead to an accurate estimation with less than 270 pcm bias in core reactivity, 0.5% bias in control rod worth, and 1.5% bias on power distribution. The study verified the applicability of multi-group cross-sections generated with the MC method for LFR analysis. The study also proved the feasibility of multi-group MC in core calculation with local heterogeneity, which saves 85% time compared to the continuous-energy MC.

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model (FAO Penman-Monteith 기준증발산식 민감도 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.285-299
    • /
    • 2023
  • Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.

Evaluation of Meteorological Elements Used for Reference Evapotranspiration Calculation of FAO Penman-Monteith Model (FAO Penman-Monteith 모형의 증발산량 산정에 이용되는 기상요소의 평가)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.274-279
    • /
    • 2006
  • The exact estimation of crop evapotranspiration containing reference or potential evapotranspiration is necessary for decision of crop water requirements. This study was carried out for the evaluation and application of various meteorological elements used for the calculation of reference evapotranspiration (RET) by FAO Penman-Monteith (PM) model. Meteorological elements including temperature, net radiation, soil heat flux, albedo, relative humidity, wind speed measured by meteorological instruments are required for RET calculation by FAO PM model. The average of albedo measured for crop growing period was 0.20, ranging from 0.12 to 0.23, and was slightly lower than 0.23. Determinant coefficients by measured albedo and green grass albedo were 0.97, 0.95 and standard errors were 0.74, 0.80 respectively. Usefulness of deductive regression models was admitted. To assess an influence of soil heat flux (G) on FAO PM, RET with G=0 was compared with RETs using G at 5cm soil depth ($G_{5cm}$) and G at surface ($G_{0cm}$). As the results, RET estimated by G=0 was well agreed with RET calculated by measured G. Therefore, estimated net radiation, G=0 and albedo of green grass could be used for RET calculation by FAO PM.

Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics (전국 논에서 발생하는 메탄 배출량의 산정 및 지도화: 지역 격차 및 특성 분석)

  • Choi, Sung-Won;Kim, Joon;Kang, Minseok;Lee, Seung Hoon;Kang, Namgoo;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.88-100
    • /
    • 2018
  • Methane emissions from rice paddies are the largest source of greenhouse gases in the agricultural sector, but there are significant regional differences depending on the surrounding conditions and cultivation practices. To visualize these differences and to analyze their causes and characteristics, the methane emissions from each administrative district in South Korea were calculated according to the IPCC guidelines using the data from the 2010 Agriculture, Forestry and Fisheries Census, and then the results were mapped by using the ArcGIS. The nationwide average of methane emissions per unit area was $380{\pm}74kg\;CH_4\;ha^{-1}\;yr^{-1}$. The western region showed a trend toward higher values than the eastern region. One of the major causes resulting in such regional differences was the $SF_o$ (scaling factor associated with the application of organic matter), where the number of cultivation days played an important role to either offset or deepen the differences. Comparison of our results against the actual methane emissions data observed by eddy covariance flux measurement in the three KoFlux rice paddy sites in Gimje, Haenam and Cheorwon showed some differences but encouraging results with a difference of 10 % or less depending on the sites and years. Using the updated GWP (global warming potential) value of 28, the national total methane emission in 2010 was estimated to be $8,742,000tons\;CO_2eq$ - 13% lower than that of the National Greenhouse Gas Inventory Report (i.e., $10,048,000tons\;CO_2eq$). The administrative districts-based map of methane emissions developed in this study can help identify the regional differences, and the analysis of their key controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Estimation of Addition and Removal Processes of Nutrients from Bottom Water in the Saemangeum Salt-Water Lake by Using Mixing Model (혼합모델을 이용한 새만금호 저층수 내 영양염의 공급과 제거에 관한 연구)

  • Jeong, Yong Hoon;Kim, Chang Shik;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.306-317
    • /
    • 2014
  • This study has been executed to understand the additional and removal processes of nutrients in the Saemangeum Salt-water Lake, and discussed with other monthly-collected environmental parameters such as water temperature, salinity, dissolved oxygen, suspended solids, and Chl-a from 2008 to 2010. $NO_3$-N, TP, $PO_4$-P, and DISi showed the removal processes along with the salinity gradients at the surface water of the lake, whereas $NO_2$-N, $NH_4$-N, and Chl-a showed addition trend. In the bottom water all water quality parameters except $NO_3$-N appeared addition processes indicating evidence of continuous nutrients suppliance into the bottom layer. The mixing modelling approach revealed that the biogeochemical processes in the lake consume $NO_3$-N and consequently added $NH_4$-N and $PO_4$-P to the bottom water during the summer seasons. The $NH_4$-N and $PO_4$-P appeared strong increase at the bottom water of the river-side of the lake and strong concentration gradient difference of dissolved oxygen also appeared in the same time. DISi exhibited continuous seasonal supply from spring to summer. Internal addition of $NH_4$-N and $PO_4$-P in the river-side of the lake were much higher than the dike-side, while the increase of DISi showed similar level both the dike and river sides. The temporal distribution of benthic flux for DISi indicates that addition of nutrients in the bottom water was strongly affected by other sources, for example, submarine ground-water discharge (SGD) through bottom sediment.

Retrieval of High Resolution Surface Net Radiation for Urban Area Using Satellite and CFD Model Data Fusion (위성 및 CFD모델 자료의 융합을 통한 도시지역에서의 고해상도 지표 순복사 산출)

  • Kim, Honghee;Lee, Darae;Choi, Sungwon;Jin, Donghyun;Her, Morang;Kim, Jajin;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.295-300
    • /
    • 2018
  • Net radiation is the total amount of radiation energy used as a heat flux for the Earth's energy cycle, and net radiation from the surface is an important factor in areas such as hydrology, climate, meteorological studies and agriculture. It is very important to monitoring the net radiation through remote sensing to be able to understand the trend of heat island and urbanization phenomenon. However, net radiation estimation using only remote sensing data is generally causes difference in accuracy depending on cloud. Therefore, in this paper, we retrieved and monitored high resolution surface net radiation at 1 hour interval in Eunpyeong New Town where urbanization using Communication, Ocean and Meteorological Satellite (COMS), Landsat-8 satellite and Computational Fluid Dynamics (CFD) model data reflecting the difference in building height. We compared the observed and estimated net radiation at the flux tower. As a result, estimated net radiation was similar trend to the observed net radiation as a whole and it had the accuracy of RMSE $54.29Wm^{-2}$ and Bias $27.42Wm^{-2}$. In addition, the calculated net radiation showed well the meteorological conditions such as precipitation, and showed the characteristics of net radiation for the vegetation and artificial area in the spatial distribution.