• 제목/요약/키워드: Flux Distribution

검색결과 1,171건 처리시간 0.021초

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.

Measurements of In-phantom Neutron Flux Distribution at the HANARO BNCT Facility

  • Kim Myong Seop;Park Sang Jun;Jun Byung Jin
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.203-209
    • /
    • 2004
  • In-phantom neutron flux distribution is measured at the HANARO BNCT irradiation facility. The measurements are performed with Au foil and wires. The thermal neutron flux and Cd ratio obtained at the HANARO BNCT facility are $1.19{\times}10^9\;n/cm^{2}s$ and 152, respectively, at 24 MW reactor power. The measured in-phantom neutron flux has a maximum value at a depth of 3 mm in the phantom and then decreases rapidly. The maximum flux is about $25\%$ larger than that of the phantom surface, and the measured value at a depth of 22 mm in the phantom is about a half of the maximum value. In addition, the neutron beam is limited well within the aperture of the neutron collimator. The two-dimensional in-phantom neutron flux distribution is determined. Significant neutron irradiation is observed within 20 mm from the phantom surface. The measured neutron flux distribution can be utilized in irradiation planning for a patient.

Theoretical Analysis of Magnetic Flux Density Distribution in an Electro-Magnetic Chuck

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • 제2권2호
    • /
    • pp.114-119
    • /
    • 2001
  • The distribution of magnetic flux density of electro-magnetic chucks may clarify the clamping characteristics, which is strongly related to the machining efficiency and machining accuracy in surface grinding machine. Therefore the distribution of the normal and the tangential components of magnetic flux density have been analyzed theoretically. It appears that the normal component of magnetic flux density increases and the tangential component of magnetic flux density increases as the ratio of the separator width to the pitch, e/p decreases. The results seem to increase the stability and uniformity of normal component of magnetic flux density for the decreased e/p.

  • PDF

Interlaminar Flux Density Distribution at Joints of Overlapping Stacked Electrical Steel and Amorphous Ribbons

  • Erdem, Sezer;Derebasi, Naim
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.190-193
    • /
    • 2010
  • The design of joints in a transformer core significantly affects the transformer's efficiency. Air gaps cause variations in the flux distribution at the joints of the laminations, which depend on the geometry. Two similar samples consisting of electrical steel strips and amorphous ribbons were made. The spatial flux distributions were determined using an array of search coils for each sample. 2D models of these samples were created and examined by finite element analysis. The magnetic flux distribution for each lamination in the samples was computed. The results show that the flux density in amorphous ribbons above and below the air gap starts to approach saturation at lower flux density levels than for electrical steel. The flux density measured using the search coil under the air gap is increased in amorphous ribbons and decreased in the electrical steel with increasing frequency.

KIERDISH II 태양열 집광시스템의 플럭스밀도 분포 (Flux Density Distribution of the Dish Solar Concentrator (KIERDISH II))

  • 강명철;강용혁;유성연
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.11-18
    • /
    • 2004
  • A solar concentrator, named KIERDISH II, was built at KIER in order to investigate the feasibility of high temperature solar energy application system. The constructed concentrator is a dish type solar concentrator with a focal length of 4.68m and a diameter of 7.9m. To successfully operate KIERDISH II, optimal design of the absorber is very important and flux density distribution has to be known. The focal flux density distribution on the receiver was measured. We have observed the shape and size of flux images and evaluated percent power within radius. Flux density distribution is usually measured by a CCD(charge coupled device) camera and a radiometer. In this paper we present a flux mapping method to estimate the characteristic features of the flux density distribution in the focal region of solar concentrator. The minimum radius of receiver is found to be 0.15m and approximately 90% of the incident radiation is intercepted by receiver aperture.

Tubular motor의 자속분포 특성 해석을 위한 유한요소법 적용연구 (A study on the application of finite element method to analysis of the magnetic flux distribution characteristics of the tubular motor)

  • 임달호;임태빈
    • 전기의세계
    • /
    • 제30권12호
    • /
    • pp.811-816
    • /
    • 1981
  • In this paper, the finite element method is applied to find the flux distribution of the magnetic field in the end region of the tubular motor. In order to analyze two-dimensional flux distribution, the r-z domain to be analyzed is subdivided into 56 nodes, 84 elements. In the case of wt=O and .pi./2, the flux distribution is shifted to the edge with frequency (w) and time (t) increase in the edge and the air gap. It is proved that this study does fit the actual phenomena.

  • PDF

MIVB 용접용 개폐형 자속발생기에 의한 자원밀도분포의 수치해석 (Numerical Analysis of Magnetic Flux Density Distribution by an Openable Magnetic Flux Generator for MIAB Welding)

  • 구진모;김재웅
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.50-56
    • /
    • 2004
  • MlAB(magnetically impelled arc butt) welding is a sort of pressure welding method by melting two pipe sections with high speed rotating arc and upsetting two pipes in the axial direction. The electro-magnetic force, the driving force of the arc rotation, is generated by interaction of arc current and magnetic field induced from the magnetic flux generator in the welding system. In this study, an openable coil system for the generation of magnetic flux and a 3-dimensional numerical model for analyzing the electro-magnetic field were proposed. Through the fundamental numerical analyses, a magnetic concentrator was adopted for smoothing the magnetic flux density distribution in the circumferential direction. And then a series of numerical analysis were performed for investigating the effect of system parameters on the magnetic flux density distribution in the interested welding area.. Numerical quantitative analyses showed that magnetic flux density distribution generated from the proposed coil system is mainly dependent on the exciting current in the coil and the position of coil or concentrator from the pipe outer surface. And the gap between pipe ends and arc current are also considered as important factors on arc rotating behavior.

로봇 Off-Line Programming을 위한 페인트 스프레이 시뮬레이션 방법론 개발 (An Accurate and Efficient Method of the Spray Paint Simulation for Robot OLP)

  • 이승찬;송인호;범진환
    • 한국CDE학회논문집
    • /
    • 제13권4호
    • /
    • pp.296-304
    • /
    • 2008
  • Recently, various attempts are being done to apply off-line programming system to field of paint robot. But most commercial simulation softwares have problems that are slow simulation speed and not support various painting paramenters on simulation. This paper proposes enhanced paint simulation method for off-line programming system. For these, this method used the mathematical model of flux field from a previous research. The flux field has the flux distribution function, which reflects on the feature of paint spray. A previous research derived this flux distribution function for an integral function and calculated paint thickness function for an integral function. But if flux distribution function is defined as an integral function, it is inadequate to use for real-time simulation because a number of calculation is needed for estimation of paint thickness distribution. Therefore, we defined the flux distribution function by numerical method for reducing a mount of calculation for estimation of paint thickness. We derived the equation of paint thickness function analytically for reducing a mount of calculation from the paint distribution function defined by numerical method. In order to prove proposed paint simulation method this paper compares the simulated and measured thickness. From this comparison this paper show that paint thickness distribution is predicted precisely by proposed spray paint simulation process.

TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향 (Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding)

  • 오동수;조상명
    • Journal of Welding and Joining
    • /
    • 제27권2호
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

KIER 태양로의 열유속 분포 특성 (Characteristic of the Radiation Heat Flux Distribution for the KIER Solar Furnace)

  • 채관교;이현진;김종규;윤환기;이상남;강용혁;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2011
  • Concentration characteristics of the KIER solar furnace are analyzed with a heat flux measurement technique. Total heat capacity of 40kW was confirmed within 1.04% average error, and the normalized maximum heat flux of 3,452 $kW/m^2$ was proved. Non-Gaussian flux distribution in the vertical direction implies that reflectors should not be random rather inclined downwards. Moreover, we characterized flux distribution variations with furnace blind opening ratio, distance from the focal plane, and misalignment of the measurement system. Based on the results, the heat flux distribution can be simply estimated once reflectivity and direct normal insolation values are known. This study will be helpful to the design and the performance evaluation of receivers or chemical reactors.

  • PDF