• Title/Summary/Keyword: Flux Cored Arc Welding

Search Result 110, Processing Time 0.021 seconds

A Study on the Content Variation of Metals in Welding Fumes (용접흄 충 금속함량 변화에 관한 연구)

  • 윤충식;박동욱;박두용
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

Content Variation of Total Chromium and Hexavalent Chromium in Flux Cored Arc Welding (플럭스 코어드 아크 용접 중 발생하는 총 크롬 및 6가 크롬의 함량 변화)

  • Yoon, Chung Sik;Paik, Nam Won;Kim, Jeong Han;Park, Dong Uk;Ha, Kwon Chul;Cho, Sang Jun;Kim, Shin Bum;Chae, Hyun Byung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.32-44
    • /
    • 2000
  • The practice of welding stainless steel is known to produce various valance states of chromium. $CO_2$ flux cored arc welding on stainless was performed in fume collection chamber. Content of total chromium and hexavalent chromium in fumes, content of hexavalent chromium in total chromium, solubility of hexavalent chromium were investigated. Content of total chromium in fumes increases from 2~3% to 7~9% as a function of input energy, but hexavalent chromium, less than 1.2% in fumes, is not related to input energy. Hexavalent chromium in fumes exists as solubles up to 90%. Content of total chromium in flux cored arc welding fumes and solubility of hexavalent chromium are similar to shielded metal arc welding fumes, but content of hexavalent chromium is similar to metal inert gas welding fumes. These characteristics are relevant to flux of wires and $CO_2$ shielding gas.

  • PDF

GTAW of Titanium Using Flux Cored Wire (플럭스 코어드 와이어를 이용한 티타늄의 GTAW)

  • ;Stephen Liu
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.182-184
    • /
    • 2004
  • GTAW of titanium using flux cored wire was exploited. Flux cored wire with MgF$_2$ resulted in 60% deeper penetration than conventional active GTAW which applys fluxes in the form of paste. Emission spectroscopy of the arc with MgF$_2$ showed Ti II peak, indicating higher temperature arc. Elux cored wire formed weld metal with reasonably low oxygen content.

  • PDF

A Study on the Low Temperature Impact toughness of Flux Cored Arc Weldmetal in offshore Carbon Steel Process Piping (해양 구조물의 Carbon Steel Process piping용 FC 용접부의 저온 충격인성에 관한 연구)

  • Ji Chun Ho;Choe Jun Tae;Kim Dae Sun
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.141-143
    • /
    • 2004
  • The experimental simulation welds using 3kinds of 70ksi titania based flux-cored consumables were performed on 24 inches 24.6-thick API 5L Gr. B pipe with relatively high current, over 300A and four different Post Weld Heat Treaonent(PWHT) conditions at $625^{circ}C$ were applied to each consumable test coupon. It is well known that, in common welding processes such as Submerged Arc Welding(SAW) or Flux Cored A.c Welding(FCAW), the cooling rates in as-deposited weld bead are normally so ,apid that actual precipitation of microalloy carbonitrides, Nb(C,N) or V(C,N) is not likely to occur in the as-welded weld metal, however, during stress relief or PWHT the operation of precipitation can reduce the impact properties of the weld metal. As results of mechanical testing, it is concluded that PWHT at $625^{circ}C$ is detrimental to weld metal impact toughness of Ti-B type flux- cored (FC) welding consumables regardless of the amount of Nb and V, but two optima were exhibited, one at 800ppm Ti, 75ppm 5 and another 360ppm Ti, 54ppm 5.

  • PDF

A Study on the Effect of Welding Conditions on Fume Generation Rate in $CO_2$ Flux Cored Arc Welding ($CO_2$ FCAW에서 용접조건이 Fume발생량에 미치는 영향에 관한 연구)

  • 채현병;김정한;김희남
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.87-95
    • /
    • 1998
  • The use of flux cored arc welding(FCAW) process has grown dramatically since it has been developed because of the remarkable operating characteristics and the resulting weld properties. The feature that distinguishes the FCAW process from other arc welding processes is the enclosure of fluxing ingredients within a continuously fed tubular electrode. The benefits of FCAW process are the increased productivity due to continuous wire feeding, the metallurgical effects derived from the reactions with flux, and the shapes of weld bead formed by slag. However, FCAW process causes the problem in working environment because it generates much more fume than other welding processes. Recently, the welding fume became a hot issue in the field after some welders were diagnosed as manganese toxcosis and siderosis. This study was started to investigate the characteristics of welding fume and utilize the results from the investigation to protect the welders from welding fume. As a first step, the effect of welding conditions on the fume generation rate(FGR) were investigated during FCAW process with $CO_2$ shielding. The considered welding conditions were welding current, arc voltage, travel speed, contact tube to work distance, and torch angle. The results showed that FGR was affected by all of these factors.

  • PDF

Development of an Effective Arc Sensing Algorithm for Seam-Tracking in Flux-Cored Arc Welding Process for Horizontal Fillet Joints (FCAW 수평 필릿용접용 용접선추적을 위한 아크센싱 알고리즘 개발)

  • 권순창;최재성;장낙영
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.66-80
    • /
    • 1997
  • This paper describes a newly developed arc-sensing algorithm of seam-tracking for FCA W (flux-cored arc welding) horizontal fillet welding. In this algorithm, arc current and the Weighted-Are-Current (WAC) are used to adjust the position of a weld torch in directions of bead throat and weaving, respectively. The WAC, which is newly devised in this study, means that arc current in the vicinity of weaving end is more emphasized than that in the center of weaving. The reason of this is because there usually exists much noise in the center of weaving due to abrupt change of arc length in case some empty gaps exist in a fillet joint Variance analysis was performed in order to check the effect of weld parameters on arc current and the WAC. As a result, the relationships between tip-to-workpiece distance and arc current, and between weaving offset and the WAC were established.To check "the validity of the algorithm, seam-tracking experiments were performed ;mder various welding condition. The result of experiments showed a satisfactory tracking performance in the presence of empty gaps in a horizontal fillet joint.et joint.

  • PDF

Variability of Fatigue Crack Initiation Life in Flux Cored Arc Welded API 2W Gr.50 Steel Joints

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.160-169
    • /
    • 2012
  • Flux Cored Arc Welding (FCAW) is a common practice to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the mechanical properties and variability of the fatigue crack initiation life in the flux cored arc welded API 2W Gr.50 steel joints typically applied to offshore structures with a focus on the effect of the materials in fatigue crack growth life from the notch root of a compact tension specimen. Offshore structural steel (API 2W Gr.50) plates (60-mm thick) were used to fabricate multi-path flux core arc welded butt welded joints to clearly consider fatigue fractures at the weld zone from the notch. Fatigue tests were performed under a constant amplitude cyclic loading of R = 0.4. The mean fatigue crack initiation life of the HAZ specimen was the highest among the base metal (BM), weld metal (WM), and heat affected zone (HAZ). In addition, the coefficient of variation was the highest in the WMl specimen. The variability of the short fatigue crack growth rates from the notch tips in the WM and HAZ specimens was higher than in BM.

Numerical analysis on the welding residual stress and fracture toughness of the heavy thick steel welded joints by welding processes

  • Bang, HanSur;Bang, HeeSeon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.32-39
    • /
    • 2015
  • This study examined the welding residual stress and fracture toughness of 78mm thick steel electro gas welding (EGW) and flux cored arc welding (FCAW) welded joints by numerical analyses of the thermal elasto-plastic behavior and fracture toughness(KIC). The residual stress, fracture toughness characteristics and production mechanism on the welded joints were clarified. Moreover, the effects of the welding process (EGW and FCAW) on the welding residual stresses and fracture toughness of welded joints were evaluated. The results showed that the new welding process (EGW) appears to be an effective substitute for the existing welding process (FCAW) in a thick steel plate with high strength.

A Study on the Effective Arc Sensing by the Use of the Weighted-Arc-Current in Flux-Cored Arc Welding for Fillet Joints (가중용접전류를 이용한 FCAW 필릿용접용 아크센싱 알고리즘 연구)

  • 권순창;최재성
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.83-90
    • /
    • 2000
  • It was attempted to improve seam-tracking performance by applying a new arc-sensing algorithm for FCAW(flux-cored arc welding) process in fillet joints. For this study the authors have introduced three different weight factors: $\circled1$ arc currents at the weaving end are more weighted, $\circled2$ arc currents are evenly weighted along the weaving, and $\circled3$ arc currents at the weaving center are more weighted. To evaluate the 3 factors the values of signal-to-noise(S/N) ratio has been measured. The values were obtained for various welding conditions with different gaps in horizontal and vertical fillet joints. The test results showed that the S/N ratio of the 1st case was highest which resulted in the best of seam tracking performance. In addition, the comparison between the seam tracking performance in horizontal fillet joints and that in vertical ones has been done, and the result showed that tracking performance in vertical joints was relatively better than that in horizontal joints.

  • PDF