• Title/Summary/Keyword: Flux Analysis

Search Result 2,744, Processing Time 0.026 seconds

Characteristic Analysis of a Flux-Lock Type SFCL Considering Magnetization Characteristic of Iron Core (철심의 자화특성을 고려한 자속구속형 초전도 사고전류제한기의 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.995-999
    • /
    • 2007
  • We investigated the characteristics of a flux-lock type superconducting fault current limiter(SFCL) considering magnetization characteristic of iron core. The flux-lock type SFCL, like other types of SFCLs using the iron core, undergoes the saturation of the iron core during the initial fault time. Therefore, if the design to prevent the saturation of the iron core is considered, the effective fault current limiting operation can be achieved. Through the analysis for its equivalent circuit including the magnetization characteristic of the iron core, the limiting impedance of the flux-lock type SFCL was drawn. The magnetization currents and the limited currents of SFCL, which were dependent on the winding direction and the turns' ratio between two coils, were investigated from the short circuit experiment. It was confirmed that their experimental results agreed with the analysis ones.

Analysis of Flux Observers Using Parameter Sensitivity

  • Nam H.T.;Lee K.J.;Choi J.W.;Kim H.G.;Chun T.W.;Noh E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.418-422
    • /
    • 2001
  • To achieve a high performance in direct vector control of induction motor, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using Parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function by simulation.

  • PDF

Analysis of Induction Machine Flux Observer (유도전동기 자속추정기의 특성해석)

  • Nam Hyun-Taek;Lee Kyung-Joo;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.7-10
    • /
    • 2001
  • To obtain a high performance in a direct vector controlled induction machine, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using Parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function.

  • PDF

Analysis of Induction Motor Flux Observer using Parameter Sensitivity (파라메터 민감도를 이용한 유도전동기 자속 추정기 해석)

  • Nam, Hyun-Taek;Lee, Kyung-Joo;Kim, Jin-Kyu;Choi, Young-Tae;Choi, Jong-Woo;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1176-1178
    • /
    • 2001
  • To obtain a high performance in a direct vector controlled induction machine, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function.

  • PDF

Flux Linkage Calculation for 3-D Finite Element Analysis

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Kim, Hong-Kyu
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.13-18
    • /
    • 2002
  • Novel method to calculate flux linkage for 3-D finite element analysis is proposed. It does not require any integral path if the current direction in a coil is known. The flux linkage can be calculated very easily using simple volume based integration. The current direction is calculated based on the recently developed technique by the authors. The novel method for flux linkage calculation is verified by applying to a very complicated deflection yoke coil. The simulation result is compared to the experimental one. From the simulation, it is shown that the proposed method is very accurate and effective to calculate the flux linkage of a coil.

Adaptive Flux Observer with On-line Inductance Estimation of an Interior PM Synchronous Machine Considering Magnetic Saturation

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 2009
  • This paper presents an adaptive flux observer to estimate stator flux linkage and stator inductances of an interior permanent-magnet synchronous machine considering magnetic saturation. The concept of static and dynamic inductances due to saturation is introduced in the machine model to describe the relationship between current and flux linkage and the relationship between their time derivatives. A flux observer designed in the stationary reference frame with constant inductance is analyzed in the rotor reference frame by a frequency-response characteristic. An adaptive algorithm for an on-line inductance estimation is proposed and a Lyapunov-based analysis is given to discuss its stability. The dynamic inductances are estimated by using Taylor approximation based on the static inductances estimated by the adaptive method. The simulation and experimental results show the feasibility and performance of the proposed technique.

Study of in Silico Simulation Method for Dynamic Network Model in Lactic Acid Bacteria (Lactic Acid Bacteria의 동역학 네트워크 모델을 이용한 in Silico 모사방법 연구)

  • Jung, Ui-Sub;Lee, Hye-Won;Lee, Jin-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.823-829
    • /
    • 2005
  • We have newly constructed an in silico model of fermentative metabolism for Lactococcus lactis in order to analyze the characteristics of metabolite flux for dynamic network. A rigorous mathematical model for metabolic flux has been developed and simulation researches have been performed by using GEPASI program. In this simulation task, we were able to predict the whole flux distribution trend for lactate metabolism and analyze the flux ratio on the pyruvate branch point by using metabolic flux analysis(MFA). And we have studied flux control coefficients of key reaction steps in the model by using metabolic control analysis(MCA). The role of pyruvate branch seems to be essential for the secretion of lactate and other organic byproducts. Then we have made an effort to elucidate its metabolic regulation characteristics and key reaction steps, and find an optimal condition for the production of lactate.

Comparison of the Characteristics in the Surface Mounted Permanent Magnet and Flux Concentrating Coaxial Magnetic Gears Having the Solid Cores

  • Shin, Ho-Min;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1275-1284
    • /
    • 2018
  • The coaxial magnetic gear with the flux concentrating structure is known that it has the torque performance advantage over the coaxial magnetic gear having surface mounted permanent magnet, thanks to the flux focusing effect. But, if the solid cores are used in the modulating pieces and rotor cores to consider the mechanical reliability and cost reduction, the operating torque of the flux concentrating coaxial magnetic gear can be significantly diminished because the iron losses at the solid cores affect the actual transmitted torque. Furthermore, the modulating pieces and rotor cores have different characteristics of the iron losses from one another, because the space harmonic components of the magnetic flux density, which cause the iron losses, are different. Thus, in this paper, we focused on the analysis of the characteristics of the space harmonic components of the magnetic flux density and resultant eddy current losses in the surface mounted PM and flux concentrating coaxial magnetic gears, when these coaxial magnetic gears have the solid cores at the modulating pieces and rotor cores. The characteristics of pull-out torque (static torque), operating torque (dynamic torque), and efficiency are also researched, and compared by the 3D finite element analysis (FEA) and experiment.

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.