• Title/Summary/Keyword: Fluoride Ion

Search Result 222, Processing Time 0.024 seconds

Thermal Stability of Delithiated LiCoO2-organic Electrolyte for Lithium-Ion Rechargeable Batteries (리튬이온이차전지용 LiCoO2-유기전해액의 충전상태에 따른 열적 안정성)

  • Kim, Dong-Hun;Lee, Young-Ho;Shin, Hye-Min;Chung, Young-Dong;Doh, Chil-Hoon;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Oh, Dae-Hui;Kim, Ki-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.421-424
    • /
    • 2007
  • Thermal behavior of $Li_{1-x}CoO_2$ has been investigated employing DSC (Differential Scanning calorimetry) and TGA (Thermogravimetry Analyzer), and the crystal parameters were calculated from XRD (X-ray diffraction).for the commercial rectangular pouch cell(1000 mAh).The cathode materials coated over aluminium foil current collector is made up of a blend consisting of active material $LiCoO_2$(size $20\;{\mu}m$, 94 wt%), conducting material super p black (SPB, 3 wt%) and binder polyvinylidene fluoride (PVDF, 3 wt%). The anode is a mix consisting of carbon (92 wt%) and PVDF(8 wt%) coated over copper foil. The cells for the experiments were first preconditioned by cycling three times and stabilized at OCV=3.0, 3.5, 4.2, 4.35 and 4.5 V. The stabilized cathode material was used for thermal and crystal parameter investigations.

Purification and Characterization of a Fibrinolytic Enzyme from Bacillus pumilus 2.g Isolated from Gembus, an Indonesian Fermented Food

  • Afifah, Diana Nur;Sulchan, Muhammad;Syah, Dahrul;Yanti, Yanti;Suhartono, Maggy Thenawidjaja;Kim, Jeong Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.213-219
    • /
    • 2014
  • Bacillus pumilus 2.g isolated from gembus, an Indonesian fermented soybean cake, secretes several proteases that have strong fibrinolytic activities. A fibrinolytic enzyme with an apparent molecular weight of 20 kDa was purified from the culture supernatant of B. pumilus 2.g by sequential application of ammonium sulfate precipitation, ion-exchange chromatography, and hydrophobic chromatography. The partially purified enzyme was stable between pH 5 and pH 9 and temperature of less than $60^{\circ}C$. Fibrinolytic activity was increased by 5 mM $MgCl_2$ and 5 mM $CaCl_2$ but inhibited by 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM sodium dodecyl sulfate (SDS), and 1 mM ethylenediaminetetraacetic acid (EDTA). The partially purified enzyme quickly degraded the ${\alpha}$ and ${\beta}$ chains of fibrinogen but was unable to degrade the ${\gamma}$ chain.

Purification and Characterization of a Keratinase from a Feather-Degrading Fungus, Aspergillus flavus Strain K-03

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.219-225
    • /
    • 2007
  • A keratinolytic enzyme secreted by Aspergillus flavus K-03 cultured in feather meal basal medium (FMBM) containing 2% (w/v) chicken feather was purified and characterized. Keratinolytic enzyme secretion was the maximal at day 16 of the incubation period at pH 8 and $28^{\circ}C$. No relationship was detected between enzyme yield and increase of fungal biomass. The fraction obtained at 80% ammonium sulfate saturation showed 2.39-fold purification and was further purified by gel filtration in Sephadex G-100 followed by ion exchange chromatography on DEAE-Sephadex A-50, yielding an active protein peak showing 11.53-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymograms indicated that the purified keratinase is a monomeric enzyme with 31 kDa molecular weight. The extracellular keratinase of A. flavus was active in a board range of pH ($7{\sim}10$) and temperature ($30^{\circ}C{\sim}70^{\circ}C$) profiles with the optimal for keratinase activity at pH 8 and $45^{\circ}C$. The keratinase activity was totally inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF), iodoacetic acid, and ethylenediaminetetraacetate (EDTA) while no reduction of activity by the addition of dithiothreitol (DTT) was observed. N-terminal amino acid sequences were up to 80% homologous with the fungal subtilisins produced by Fusarium culmorum. Therefore, on the basis of these characteristics, the keratinase of A. flavus K-03 is determined to be subtilisins-like.

La(III) Selective Membrane Sensor Based on a New N-N Schiff's Base

  • Ganjali, Mohammad Reza;Matloobi, Parisa;Ghorbani, Maryam;Norouzi, Parviz;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • Bis(2-methylbenzaldehyde)butane-2,3-dihydrazone(TDSB) was used as new N-N Schiff's base which plays the role of an excellent ion carrier in the construction of a La(III) membrane sensor. The best performance was obtained with a membrane containing, 30% poly(vinyl chloride), 60% benzyl acetate, 6% TDSB and 4% sodium tetraphenyl borate. This sensor reveals a very good selectivity towards La(III) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The proposed electrode exhibits a Nernstian behavior (with slope of 19.8 mV per decade) over a wide concentration range (1.0 ${\times}$ 10$^{-5}$-1.0 ${\times}$ 10$^{-1}$ M). The detection limit of the sensor is 7.0 ${\times}$ 10$^{-6}$ M. It has a very short response time, in the whole concentration range ($\sim$5 s), and can be used for at least twelve weeks in the pH range of 3.0-9.4. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a La(III) solution, with EDTA. It was also successfully applied in the determination of fluoride ions in three mouth wash preparations.

Purification and Partial Characterization of Thermostable Carboxyl Esterase from Bacillus stearothermophilus L1

  • Kim, Hyung-Kwoun;Park, Sun-Yang;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.37-42
    • /
    • 1997
  • A bacterial strain L1 producing a thermostable esterase was isolated from soil taken near a hot spring and identified as Bacillus stearothermophilus by its microbiological properties. The isolated thermostable esterase was purified by ammonium sulfate fractionation, ion .exchange and hydrophobic interaction chromatographies. The molecular weight of the purified enzyme was estimated to be 50,000 by SDS-PAGE. Its optimum temperature and pH for hydrolytic activity against PNP caprylate were $85^{\circ}C$ and 9.0, respectively. The purified enzyme was stable up to $70^{\circ}C$ and at a broad pH range of 4.0-11.5 in the presence of bovine serum albumin. The enzyme was inhibited by phenylmethylsulfonyl fluoride and diethyl p-nitrophenyl phosphate, indicating the enzyme is a serine esterase. The enzyme obeyed Michaelis-Menten kinetics in the hydrolysis of PNPEs and had maximum activity for PNP caproate ($C_6$) among PNPEs ($C_2-C_12$) tested.

  • PDF

Preparation and Characterization of the Polymeric Antioxidant for Improving the Chemical Durability of Polymer Electrolyte Membranes (고분자 전해질 막의 화학적 내구성 향상을 위한 고분자형 산화방지제 제조 및 특성 분석)

  • LEE, BYEOL-NIM;KODIR, ABDUL;LEE, HYEJIN;SHIN, DONGWON;BAE, BYUNGCHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.308-314
    • /
    • 2021
  • Chemical durability issue in polymer electrolyte membranes has been a challenge for the commercialization of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we proposed a manufacturing method of Nafion composite membrane containing a stable polyimide antioxidant to improve the chemical durability of the membrane. The thermal casting of the Nafion solution with poly (amic acid) induced polyimide reaction. We evaluated proton conductivity, oxidative stability with ex-situ Fenton's test, and fluoride ion emission to analyze the effect of polyimide antioxidants. We confirmed that incorporating the polyimide antioxidant improves the chemical durability of the Nafion membrane while maintaining inherent proton conductivity.

Improvement of the Weldability of Ni base Superalloy by using a New Powder Supply System (새로운 개념의 분말공급장치를 이용한 Ni기 초합금의 용접성 향상기술)

  • Chang, Yong Sung;Kim, Min Tae;Won, Jong Bum
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.241-248
    • /
    • 2008
  • Gas turbine blades serviced for a period are usually repaired for reuse via "rejuvenation processes" including fluoride ion cleaning, brazing or welding, and recoating. Among these processes, the welding process is applied to rebuilt damaged parts of the blade in which welding materials being mostly Ni base superalloy are supplied in the form of powder or wire. When powder is used in the welding process, the uniform supply of powder is a very important factor for the uniformity of welding. According to our experience, the uniformity was very poor with the powder supply system only utilizing pressurized air flow. A new powder supply system was developed in which powder is supplied via air flow and simultaneously mechanically. The welding uniformity was much improved with this new system. In this study, the microstructure and mechanical properties of welded parts obtained from several kinds of powder using the new powder supply system were characterized.

Organometallic fluorine-18 bonds in 18F-radiochemistry

  • Joong-Hyun Chun;Minju Lee;Sungwon Jun;Jeongmin Son
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.22-32
    • /
    • 2021
  • Fluorine-18 is by far the most widely exploited radionuclide in PET (positron emission tomography) radiochemistry. The physical half-life of fluorine-18 allows for chemical manipulation within a restricted timeframe, and cyclotron-produced fluoride ion has been widely applied in aliphatic and aromatic nucleophilic radiofluorinations to produce a variety of established radiotracers. Radiotracers have become more structurally complicated to address diverse targets in physiobiological systems. There is therefore an unmet need to complement traditional C-18F bond-forming radiofluorination with new and efficient radiolabeling techniques to tackle the myriad of possible chemical environments. This review discusses recent advances in organometallic fluorine-18 bond creation in 18F-radiochemistry. Although not widely employed, new radiolabeling strategies for constructing boron-18F, silicon-18F, aluminum-18F, and other metal-18F bonds are described in view of their potential use in the development of novel radiopharmaceuticals.

Effect of Microporous Structure of Al2O3/PVdF_HFP Ceramic Coating Layers on Thermal Stability and Electrochemical Performance of Composite Separators for Lithium-Ion Batteries (Al2O3/PVdF_HFP 세라믹코팅층의 미세기공구조가 리튬이차전지용 복합분리막의 열 안정성 및 전기화학특성에 미치는 영향)

  • Jeong, Hyun-Seok;Kim, Kyu-Chul;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.324-328
    • /
    • 2009
  • The internal short-circuit between cathodes and anodes has been known to be a critical concern for the safety failures of lithium-ion batteries, which is strongly influenced by the thermal stability of separators. In this study, to effectively suppress the internal short-circuit failures, we developed a new composite separator with the improved thermal stability compared to conventional polyolefin-based separators. The composite separators were prepared by introducing a ceramic coating layer ($Al_2O_3$/PVdF-HFP) onto both sides of a polyethylene (PE) separator. The microporous structure of ceramic coating layers is determined by controlling the phase inversion of coating solutions and becomes more developed with the increase of nonsolvent (water) content. This structural change of ceramic coating layers was observed to greatly affect the thermal stability as well as the electrochemical performance of composite separators, which was systematically discussed in terms of phase inversion.

Fabrication and Evaluation of Si3N4-coated Organic/inorganic Hybrid Separators for Lithium-ion Batteries (Si3N4-코팅 유/무기 복합 분리막을 통한 리튬이온전지용 분리막의 제조 및 평가)

  • Yeo, Seung-Hun;Son, Hwa-Young;Seo, Myeong-Su;Roh, Tae-Wook;Kim, Gyu-Chul;Kim, Hyun-Il;Lee, Ho-Chun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.48-53
    • /
    • 2012
  • Polyethylene (PE) separator is the most popular separator for lithium-ion batteries. However, it suffers from thermal contraction and mechanical rupture. In order to improve the thermal/mechanical dimensional stabilities, this study investigated the effects of $Si_3N_4$ coating. SCS (Silicon-nitride Coated Separator) has been fabricated by applying 10 ${\mu}m$-thick $Si_3N_4$/PVdF coating on one side of PE separator. SCS exhibits enhanced thermal stability over $100{\sim}150^{\circ}C$: its thermal shrinkage is reduced by 10~20% compared with pristine PE separator. In addition, SCS shows higher tensile strength than PE separator. Employing SCS hardly affects the C-rate performance of $LiCoO_2$/Li coin-cell, even though its ionic conductivity is somewhat lower than that of PE separator.