• Title/Summary/Keyword: Fluorescent quenching

Search Result 57, Processing Time 0.024 seconds

The Effect of Dibucaine.HCl on the Physical Properties of Neuronal Membranes

  • Jang, Hye-Ock;Hyun, Cheol-Ho;Yoon, Jin-Hyeok;Kang, Yong-Gyu;Park, Sung-Min;Park, Young-Sik;Park, Jun-Seop;Ok, Jin-Seok;Lee, Dong-Hun;Bae, Moon-Kyung;Yun, Il
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • Fluorescent probe techniques were used to evaluate the effect of dibucaine.HCl on the physical properties (transbilayer asymmetric lateral mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(l-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Dibucaine.HCl increased the bulk lateral mobility, and annular lipid fluidity in SPMV lipid bilayers, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMV lipid bilayer induced by dibucaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral mobility of bulk SPMV lipid bilayer. It also caused membrane proteins to cluster. These effects of dibucaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of dibucaine.HCl.

  • PDF

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

A Study on the Luminescent Characteristics of YPO4:Pr3+ Phosphor by the Content Ratio of Pr6O11 and Calcination Temperature (Pr6O11의 함량 및 열처리 조건에 따른 YPO4:Pr3+ 형광체의 발광 특성 연구)

  • Min Jun Kim;Seong Eui Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.68-73
    • /
    • 2024
  • In this study, the praseodymium-doped yttrium phosphate (YPO4:Pr3+) powder, which is well known for its high luminescent efficiency, and long life in the UV range, was synthesized with various content ratios of Pr6O11 and calcination temperature. Crystal structure and luminescent properties of various phosphor powders based on different concentrations and calcination conditions were characterized by XRD (X-Ray Diffraction) and PL (photoluminescence) spectrometers. From the XRD analysis, the structure of YPO4:Pr3+ which is calcinated at 1,200℃ was stable tetragonal phase and crystal size was calculated about 25 nm by Scherrer equation. PL emission of YPO4:Pr3+ with a different content ratio of Pr6O11 by excitation λexc=250 nm shows that 0.75 mol% phosphor powder has maximum PL intensity and PL decreases with the increase of the ratio of Pr6O11 up to 1.25 mol% which is caused by changes of crystallinity of phosphor powders. With increasing dopant ratio, photo-luminescence Emission decreases due to Concentration quenching, which is commonly observed in phosphors. Currently, 0.75 mol% is considered the optimal doping concentration. A hybrid ultraviolet-emitting device incorporating YPO4:Pr3+ fluorescent material with plasma discharge was fabricated to enhance UV germicidal effects while minimizing ozone generation. UV emission from the plasma discharge device was shown at about 200 nm and 350 nm which caused additional emission of the regions of 250 nm, 315 nm, and 370 nm from the YPO4:Pr3+ phosphor.

Synthesis and Properties of SrMoO4 Phosphors Doped with Various Rare Earth Ions for Anti-Counterfeiting Applications (위조 방지 분야에 응용 가능한 다양한 희토류 이온이 도핑된 SrMoO4 형광체의 제조 및 특성)

  • Moon, Tae-Ok;Jung, Jae-Yong;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.406-412
    • /
    • 2020
  • SrMoO4:RE3+ (RE=Dy, Sm, Tb, Eu, Dy/Sm) phosphors are prepared by co-precipitation method. The effects of the type and the molar ratio of activator ions on the structural, morphological, and optical properties of the phosphor particles are investigated. X-ray diffraction data reveal that all the phosphors have a tetragonal system with a main (112) diffraction peak. The emission spectra of the SrMoO4 phosphors doped with several activator ions indicate different multicolor emissions: strong yellow-emitting light at 573 nm for Dy3+, red light at 643 nm for Sm3+, green light at 545 nm for Tb3+, and reddish orange light at 614 nm for Eu3+ activator ions. The Dy3+ singly-doped SrMoO4 phosphor shows two dominant emission peaks at 479 and 573 nm corresponding to the 4F9/26H15/2 magnetic dipole transition and 4F9/26H13/2 electric dipole transition, respectively. For Dy3+ and Sm3+ doubly-doped SrMoO4 phosphors, two kinds of emission peaks are observed. The two emission peaks at 479 and 573 nm are attributed to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ and two emission bands centered at 599 and 643 nm are ascribed to 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increases from 1 to 5 mol%, the intensities of the emission bands of Dy3+ gradually decrease; those of Sm3+ slowly increase and reach maxima at 5 mol% of Sm3+ ions, and then rapidly decrease with increasing molar ratio of Sm3+ ions due to the concentration quenching effect. Fluorescent security inks based on as-prepared phosphors are synthesized and designed to demonstrate an anti-counterfeiting application.

The Effect of Lidocaine.HCl on the Fluidity of Native and Model Membrane Lipid Bilayers

  • Park, Jun-Seop;Jung, Tae-Sang;Noh, Yang-Ho;Kim, Woo-Sung;Park, Won-Ick;Kim, Young-Soo;Chung, In-Kyo;Sohn, Uy Dong;Bae, Soo-Kyung;Bae, Moon-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.413-422
    • /
    • 2012
  • The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine HCl. Lidocaine HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.

Effect of Light-emitting Diodes on Photosynthesis and Growth of in vitro Propagation in Tea Tree (Camellia sinensis L.) (LED 광질이 차나무 기내배양묘의 생육 및 광합성에 미치는 영향)

  • Im, Hyeon-Jeong;Na, Chae-Sun;Song, Chi-Hyeon;Won, Chang-O;Song, Ki-Seon;Hwang, Jung-Gyu;Kim, Do-Hyun;Kim, Sang-Geun;Kim, Hyun-Chul
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • The influences of light generated by LEDs on shoot growth and photosynthesis of Tea plant(Camellia sinensis L.) were evaluated. The growth characteristics were investigated after 45 days of culture under four different light qualities: fluorescent lamp, red LED, blue LED, red+blue+white LED. Shoot growth was promoted by red light, especially root length and area were further promoted under the red+blue+white LED. Also, T/R ratio and Chlorophyll content were highest in red+blue+white. Fluor Cam was used to measure the fluorescence images of the plants, inhibition of photochemical efficiency(Fv/Fm) were not changed in all treatment. However, non-photochemical quenching(NPQ) were found rapidly increasing in blue LED, these results were that blue LED were inhibit photosynthetic efficiency and must be considered for efficiently in vitro cultivation of the tea plant. The above results suggest that light qualities could be an important factor to foster in vitro growth of the species. Also, In order to produce healthy plants, it is effective to using light qualities of red+blue+white LED on in vitro culture of the tea plant. These results could be used to mass propagating shoot and produce of healthy seedling.

The Effect of Methanol on the Structural Parameters of Neuronal Membrane Lipid Bilayers

  • Joo, Hyung-Jin;Ahn, Shin-Ho;Lee, Hang-Rae;Jung, Sung-Woo;Choi, Chang-Won;Kim, Min-Seok;Bae, Moon-Kyoung;Chung, In-Kyo;Bae, Soo-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.255-264
    • /
    • 2012
  • The structures of the intact synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortexs, and the outer and the inner monolayer separately, were evaluated with 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(1-pyrenyl)propane (Py-3-Py) as fluorescent reporters and trinitrophenyl groups as quenching agents. The methanol increased bulk rotational and lateral mobilities of SPMVs lipid bilayers. The methanol increased the rotational and lateral mobilities of the outer monolayers more than of the inner monolayers. n-(9-Anthroyloxy)stearic acid (n-AS) were used to evaluate the effect of the methanol on the rotational mobility at the 16, 12, 9, 6, and 2 position of aliphatic chains present in phospholipids of the SPMVs outer monolayers. The methanol decreased the anisotropy of the 16-(9-anthroyloxy)palmitic acid (16-AP), 12-(9-anthroyloxy)stearic acid (12-AS), 9-(9-anthroyloxy)stearic acid (9-AS), and 6-(9-anthroyloxy)stearic acid (6-AS) in the SPMVs outer monolayer but it increased the anisotropy of 2-(9-anthroyloxy)stearic acid (2-AS) in the monolayers. The magnitude of the increased rotational mobility by the methanol was in the order at the position of 16, 12, 9, and 6 of aliphatic chains in phospholipids of the outer monolayers. Furthermore, the methanol increased annular lipid fluidity and also caused membrane proteins to cluster. The important finding is that was far greater increase by methanol in annular lipid fluidity than increase in lateral and rotational mobilities by the methanol. Methanol alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that methanol, in additions to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membranes lipids.