• Title/Summary/Keyword: Fluorescence signal

Search Result 211, Processing Time 0.021 seconds

Miniature Fluorescence Detection System for Protein Chips by Prism (프리즘을 이용한 소형 단백질칩 분석 형광측정 시스템 개발)

  • Choi, Jae-Ho;Kim, Ho-Seong;Lee, Kook-Nyung;Kim, Eun-Mi;Kim, Yong-Kweon;Kim, Byung-Gee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2040-2042
    • /
    • 2004
  • This paper presents a miniature optical system for the fluorescence detection of the patterned protein chip. The patterned protein chip was fabricated using MEMS process. The fluorescence from the patterned protein chip was measured while varying the concentration of the BSA. The fluorescence light is separated spatially from the excitation beam using mini-size prism to increase SNR (Signal-to-Noise Ratio). The combination of prism and mirrors can convert the excitation light from the laser diode to uniform illumination on the specimen. We believe that the proposed system for fluorescence detection can be applied to rea1ization of point-of-care.

  • PDF

A Linear Beacon System Featuring an Internal Deoxyguanine Quencher Allows Highly Selective Detection of Single Base Mismatches

  • Lee, Young-Ae;Hwang, Gil-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2011-2014
    • /
    • 2010
  • The fluorescence intensity of a single-stranded oligonucleotide containing a fluorene-labeled deoxyuridine $(U^{Fl})$ unit increases by only 1.5-fold upon formation of its perfectly matched duplex. To increase the fluorescence signal during hybridization, we positioned a quencher strand containing a deoxyguanine (dG) nucleobase, functioning as an internal quencher, opposite to the $U^{Fl}$ unit to reduce the intrinsic fluorescence upon hybridization with a probe. From an investigation of the optimal length of the quencher strand and the effect of the neighboring base sequence, we found that a short strand (five-nucleotide) containing all natural nucleotides and dG as an internal quencher was effective at reducing the intrinsic fluorescence of a linear beacon; it also exhibited high total discrimination factors for the formation of perfectly matched and single base-mismatched duplexes. Such assays that function based on clear changes in fluorescence in response to single-base nucleotide mutations would be useful tools for accelerating diagnoses related to various diseases.

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

Noise Characteristic Analysis of X-Ray Fluorescence Spectrum (형광 X-선 스펙트럼의 잡음 특징 분석)

  • Lee, Jae-Hwan;Chon, Sun-Il;Yang, Sang-Hoon;Park, Dong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2298-2304
    • /
    • 2012
  • X-ray fluorescence spectrum analysis method can be applied in many areas, including concentration analysis of RoHS elements and heavy metals etc. and we can get analysis results in a relatively short time. Because X-ray fluorescence spectrum has noises and several artifacts that lowers the accuracy of the analysis. This paper analyzes the characteristics of the noise of the X-ray fluorescence spectrum to increase the accuracy of analysis. X-ray fluorescence spectrum have the characteristics of shot noise (Poisson noise), so the noise size is relatively large in the small signal portion and the noise the size is relatively small in the large part of the signal. Existing methods of analysis and to remove noises is a method for general purposes algorithm. Since these algorithm does not reflect these noise characteristics, we get distorted analysis result. We can design efficient noise remove algorithm based on the accurate noise analysis method, and we expect high accuracy results of the elemental concentration analysis result.

Measurement of two dimensional oil film thickness in piston by induced fluorescence method (유기형광법을 이용한 피스톤 유막두께의 이차원적 측정)

  • 민병순;최재권
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.166-174
    • /
    • 1998
  • The distribution of oil film thickness in piston were measured by induced fluorescence method. A Xe lamp was used as light source. Coumarine-6 was mixed with oil as the fluorescent dye. Fluorescent signal which is proportional to the oil film thickness was acquired by CCD camera and transmitted to the personal computer as video signal. In order to solve the problem of measurement system, irregular distribution and unstability of light intensity, as well as to know the relationship between the oil film thickness and output signal, three different calibration techniques were used. Motoring and firing tests were performed in a single cylinder research engine with transparent liner. By analyzing the oil film thickness converted from the photographed image, it was observed that each of three piston rings scrapes the oil both upward and downward and oil film thickness is not uniform horizontally at a given piston land. The amount of oil in each land was considerably affected by the engine load. It is thought that the blow-by gas blows the oil down to the crankcase.

  • PDF

Study on the Characteristics of Laser-induced Fluorescence from Trace Samarium, Europium and Terbium (미량분석을 위한 Sm, Eu과 Tb의 레이저 여기 형광 특성 분석)

  • Lee, Sang-Mock;Shin, Jang-Soo;Zee, Kwang-Yong;Kim, Cheol-Jung
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.287-293
    • /
    • 1989
  • The purpose of this study was to develop a rapid and effective method of laser-induced fluorescence analysis for thrace amounts of Sm, Eu and Tb in nuclear fuels. The features of the method are the use of the distinct fluorescence wavelengths and the discriminative lifetimes of the respective elements when excited by a pulsed nitrogen laser. Fluorescence signals of the three elements were isolated by adequate selection of the filters or complexing agents (HFA, TTA) or discriminative delay and gate times in the signal processing circuit. It was found that S $m^{+3}$ and E $u^{+3}$ emitted strong fluorescence in the two complexing agent solutions or HFA and TTA. But in the case or T $b^{+3}$, the fluorescence signal was detected only in HFA solution. With respect to the concentrations of S $m^{+3}$, E $u^{+3}$ and T $b^{+3}$, the fluorescence signal intensities gave superior linearities in the range of 5 ppb-10 ppm for S $m^{+3}$, 0.5 ppb-1 ppm for E $u^{+3}$, and 0.1 ppb-300 ppb for T $b^{+3}$, The detection limits obtained were 5 ppb for S $m^{+3}$, 0.1 ppb for E $u^{+3}$, and 0.01 ppb for T $b^{+3}$, respectively.

  • PDF

NO measurements in lean and soot flame using KrF laser (KrF 레이저를 이용한 희박연소화염과 매연화염에서의 NO계측)

  • 손성민;고동섭;이중재;오승묵;강건용;김종욱
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2001
  • The KrF laser was employed to study NO fluorescence in lean-bum as well as in soot-bum flames. Blue-shifted NO fluorescence was observed in both of the flames. For both of the flames, the fluorescence intensity of NO and its relative background noise signal were measured with respect to the concentration of seeded NO molecule in the flame and the laser intensity. The results were analyzed qualitatively. Also, NO concentration distribution in the lean-bum flame was qualitatively determined from the intensity of the NO fluorescence. cence.

  • PDF

Facile Synthesis of the Uryl Pendant Binaphthol Aldehyde and Its Selective Fluorescent Recognition of Tryptophan

  • Tang, Lijun;Wei, Gongfan;Nandhakumar, Raju;Guo, Zhilong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3367-3371
    • /
    • 2011
  • An easy and convenient synthetic route to (S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1), capable of recognizing tryptophan by fluorescence has been developed. The binol carboxaldehyde 1 exhibited a high selectivity to L-tryptophan over other examined L-${\alpha}$-amino acids such as alanine, phenylalanine, glutamine, arginine, lysine, serine, threonine, aspartat, valine, histidine and cysteine, with a fluorescence "turn-on" signal. In addition, 1 displayed chiral discrimination with good enantioselectivity toward L-tryptophan over D-tryptophan through different fluorescence enhancement factors.

Single-molecule Detection of Fluorescence Resonance Energy Transfer Using Confocal Microscopy

  • Kim, Sung-Hyun;Choi, Don-Seong;Kim, Do-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • We demonstrated single-molecule fluorescence resonance energy transfer (FRET) from single donor-acceptor dye pair attached to a DNA with a setup based on a confocal microscope. Singlestrand DNAs were immobilized on a glass surface with suitable inter-dye distance. Energy transfer efficiency between the donor and the acceptor dyes attached to the DNA was measured with different lengths of DNA. Photobleaching of single dye molecule was observed and used as a sign of single-molecule detection. We could achieve high enough signal-to-noise ratio to detect the fluorescence from a single-molecule, which allows real-time observation of the distance change between single dye pairs in nanometer scale.