• Title/Summary/Keyword: Fluorescence sensing

Search Result 87, Processing Time 0.035 seconds

Characterization of carbon dioxide sensitive fluorescence dye immobilized on the sol-gel

  • Sohn, Ok-Jae;Lam, Tuan-Hung;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.478-481
    • /
    • 2005
  • In this study optical sensing membrane was developed for the queantification of dissolved carbon dioxide in micro-bioreactor using an immobilized 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS). For the immobilization of HPTS sol-gel was synthesied by using 3-glycidoxypropyl-dimethoxymethylsiline and tetraethyl orthosilicate.

  • PDF

Detection of fluorescence from soils contaminated with monoaromatic hydrocarbons (유류 오염 토양에서의 단일방향족 탄화수소 농도 측정을 위한 자외선 형광 분석에 관한 연구)

  • 김우진;박재우;이주인
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • In order to determine the contamination of the aromatic hydrocarbons in soil, a fiber-optic sensing technique with fluorescence detector has been proposed. Previous researches have shown that the optimal condition for detecting benzene, toluene, ethylbenzene, xylene (BTEX) was 260 nm /290 nm (excitation/emission wavelength). However, broader fluorescence spectra of BTEX-polluted soil sample ranging from 300 nm to 600 nm were observed. Additionally, the intensity of fluorescence increased with increasing BTEX concentration, which was conspicuous in the fine-particle soil, The overall results indicated that the suggested technique could be useful for in-situ monitoring system for subsurface oil-storage tank.

Determination of $Ca^{2+}$ by Fiber Optic Fluorosensor Based on the Conformational Change of the Protein Calmodulin (Calmodulin 단백질의 형태변화를 이용한 광섬유 형광센서에 의한 $Ca^{2+}$의 정량)

  • Ri, Chang-Seop;Yang, Seung Tae
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.221-227
    • /
    • 1995
  • The fiber optic fluorosensor that shows a specific selectivity for calcium ion is studied. This sensor employs protein Calmodulin(CaM) which forms a fluorescent chelate with $Ca^{2+}$. A dialysis membrane is used to entrap a fluorescein isothiocyanate-labeled CaM solution at the common end of a bifurcated fiber optic bundle. The sensing mechanism of this sensor is based on the shifts in the fluorescence spectrum of metal-calmodulin complexes which FCaM forms a chelate with $Ca^{2+}$. Upon binding with $Ca^{2+}$, CaM undergoes a conformational change which induces a change in the fluorescence of FCaM. This change in fluorescence signal which is measured by photomultiflier tube is related to the concentration of $Ca^{2+}$ for calibration curve. Detection limit for $Ca^{2+}$ and the interference effects by $Mg^{2+}$, $Eu^{3+}$ and $La^{3+}$ for this sensor are studied. Response time and life time for this fluorosensor are also investigated.

  • PDF

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

A Triple-Probe Channel NO2S2-Macrocycle: Synthesis, Sensing Characteristics and Crystal Structure of Mercury(II) Nitrate Complex

  • Lee, Ji-Eun;Choi, Kyu-Seong;Seo, Moo-Lyong;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2031-2035
    • /
    • 2010
  • A triple-probe channel type chemosensor based on an $NO_2S_2$-macrocycle functionalized with phenyltricyanovinyl group was synthesized and its sensing characteristics were examined. The pink-red solution of L changed selectively to pale yellow upon addition of $Hg^{2+}$. The selective fluorometric response of L to all the tested metal ions was studied. The results showed that a large enhancement of the fluorescence of L was observed only in the case of $Hg^{2+}$. In addition, L showed large anodic shift (~ 0.3 V) for the addition of excess $Hg^{2+}$. Through above three observed results by the different techniques, we confirmed that the proposed chemosensor acts as the multiple-probe channel sensing material. The crystal structure of mercury(II) nitrate complexs of L which shows a 1-D polymer network with a formula $[Hg_2(L)_2(NO_3)_2({\mu}-NO_3)_2]_n$ was also reported.

ASIC2a-dependent increase of ASIC3 surface expression enhances the sustained component of the currents

  • Kweon, Hae-Jin;Cho, Jin-Hwa;Jang, Il-Sung;Suh, Byung-Chang
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.542-547
    • /
    • 2016
  • Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. Proton sensing by ASICs has been known to mediate pain, mechanosensation, taste transduction, learning and memory, and fear. In this study, we investigated the differential subcellular localization of ASIC2a and ASIC3 in heterologous expression systems. While ASIC2a targeted the cell surface itself, ASIC3 was mostly accumulated in the ER with partial expression in the plasma membrane. However, when ASIC3 was co-expressed with ASIC2a, its surface expression was markedly increased. By using bimolecular fluorescence complementation (BiFC) assay, we confirmed the heteromeric association between ASIC2a and ASIC3 subunits. In addition, we observed that the ASIC2a-dependent surface trafficking of ASIC3 remarkably enhanced the sustained component of the currents. Our study demonstrates that ASIC2a can increase the membrane conductance sensitivity to protons by facilitating the surface expression of ASIC3 through herteromeric assembly.

In-situ and remote observation of Cochlodinium.p blooms and consequences of physical features off the Korean coast

  • Ahn Yu-Hwan;Shanmugam P.;Ryu Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.553-556
    • /
    • 2004
  • Spatial and temporal aspects of toxic dinoflagellate Cochlodinium.p blooms and consequences of physical features in complex coastal ecosystems, off the southern Korean coast, have been investigated using data obtained from SeaWiFS and AVHRR as well as in-situ observations. Hydrographic parameters measured using CTD sensors were used to elucidate physical factors affecting the spatial distribution and abundance of Cochlodinium.p blooms. The results show spatial and temporal variations of chlorophyll-a (Chl-a) and sea surface temperature (SST) and reveal significant information about Cochlodinium.p blooms and process underlying their evolution. Satellitederived Chl-a estimates appear to be potential in explicating the evolution, movement and distribution of Cochlodinium.p blooms in the enclosed bays of the South Sea. The existence of thromohaline waters offshore provide favorable conditions for the rapid growth and subsequent southward initiation of Cochlodinium.p blooms that are influenced to flow on the offshore branch (OB) during September. It was observed that there was a significant variation in the sun-induced chlorophyll-a fluorescence signal in the remote sensing fluorescence spectra and its high-intensity was recognized during the period of exponential growth and physical transport. Satellite-derived Chl-a concentration during September 1999 ranged between $3­60mg/m^3$ inside the Jin-hae and adjacent Bays and $1-6mg/m^3$ in offshore waters, with varying Cochlodinium.p abundances 1500 to 26000 cells $ml^{-1}.$ The closely spaced CTD surveys and satellite-derived SST give a complete overview on the initiation of Cochlodinium.p blooms in hydrodynamically active regions of the offshore southern East Sea by the influence of Tsushima Warm Current (TWC).

  • PDF

Construction of an Oscillator Gene Circuit by Negative and Positive Feedbacks

  • Shen, Shihui;Ma, Yushu;Ren, Yuhong;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.139-144
    • /
    • 2016
  • Synthetic oscillators are gene circuits in which the protein expression will change over time. The delay of transcription, translation, and protein folding is used to form this kind of behavior. Here, we tried to design a synthetic oscillator by a negative feedback combined with a positive feedback. With the mutant promoter PLacC repressed by LacIq and PLux activated by AHL-bound LuxR, two gene circuits, Os-LAA and Os-ASV, were constructed and introduced into LacI-deleted E. coli DH5α cells. When glucose was used as the carbon source, a low level of fluorescence was detected in the culture, and the bacteria with Os-ASV showed no oscillation, whereas a small portion of those carrying Os-LAA demonstrated oscillation behavior with a period of about 68.3 ± 20 min. When glycerol was used as the carbon source, bacteria with Os-ASV demonstrated high fluorescence value and oscillation behavior with the period of about 121 ± 21 min.

Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

  • Noh, Jin Young;Hwang, In Hong;Kim, Hyun;Song, Eun Joo;Kim, Kyung Beom;Kim, Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1985-1989
    • /
    • 2013
  • A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward $CN^-$ ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of $CN^-$ to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 ${\mu}M$) is below the 1.9 ${\mu}M$ suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of $CN^-$ concentrations in aqueous samples.