• Title/Summary/Keyword: Fluorescence protein

Search Result 620, Processing Time 0.033 seconds

Fluorescence Quenching of Green Fluorescent Protein during Denaturation by Guanidine

  • Jung, Ki-Chul;Park, Jae-Bok;Maeng, Pil-Jae;Kim, Hack-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.413-417
    • /
    • 2005
  • Fluorescence of green fluorescent protein mutant, 2-5 GFP is observed during denaturation by guanidine. The fluorescence intensity decreases exponentially but the fluorescence lifetime does not change during denaturation. The fluorescence lifetime of the denatured protein is shorter than that of native form. As the protein structure is modified by guanidine, solvent water molecules penetrate into the protein barrel and protonate the chromophore to quench fluorescence. Most fluorescence quenchers do not affect the fluorescence of native form but accelerate the fluorescence intensity decay during denaturation. Based on the observations, a simple model is suggested for the structural change of the protein molecule during denaturation.

PROTEIN CONFORMATIONS OF OCTOPUS RHODOPSIN AND ITS DEPROTONATED PHOTOCYCLE INTERMEDIATE MONITORED BY ABSORPTION AND PROTEIN FLUORESCENCE

  • Jang, Du-Jeon;Lee, SunBae
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1995
  • Picosecond time-resolved and static protein fluorescence spectra and absorption spectra of octopus rhodopsin, a photorecepting protein, are measured and compared with those of bacteriorhodopsin, a photon-induced proton pumping protein, to understand the protein conformations and functions of octopus rhodopsin and its deprotonated photocycle intermediate. The bluer and weaker absorption of retinal indicates that octopus rhodopsin is better in thermal noise suppression but less efficient in light harvesting than bacteriorhodopsin. The protein fluorescence of octopus rhodopsin shows the characteristic of Trp only and the uantum efficiency and lifetime variations may result primarily from variations in the coupling strength with the retinal. The stronger intensity by four times and larger red shift by 12 nm of fluorescence suggest that octopus rhodopsin has more open and looser structure compared with bacteriorhodopsin. Fluorescence decay profiles reveal two decay components of 300 ps (60%) and 2 ns (40%). The deprotonation of protonated Schiff's base increases the shorter decay time to 500 ps and enhances the fluorescence intensity by 20%. The fluorescence and its decay time from Trp residues near retinal are influenced more by the deprotonation. The increase of fluorescence intimates that protein structure becomes loosened and relaxed further by the deprotonation of protonated Schiff's base. The driving force of sequential changes initiated by absorption of a photon is too exhausted after the deprotonation to return the intermediate to the ground state of the begun rhodopsin form.

  • PDF

Enhanced Fluorescence from Silk Protein with TiO2 Scatters (산화티타늄 나노 입자에 의한 실크 단백질 형광 증폭 연구)

  • Rakesh Kumar Jha;Sunghwan Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.30-34
    • /
    • 2024
  • We report a purely protein-based platform for green fluorescence by mixing silk protein with green fluorescence protein, and also report its enhancement by the incorporation of TiO2 nanoparticles. The TiO2 nanoparticles employed have diameters of 100 and 300 nm, with a significant increase in fluorescence (by a factor of 7.5) observed when introducing 300-nm TiO2 nanoparticles. Furthermore, an increase in particle distribution density is found to enhance fluorescence amplification. These research findings suggest that protein-based fluorescent films can be enhanced by the characteristics of nanoparticles, opening up new possibilities in the fields of optics and fluorescence applications.

Conformation Studies by Circular Dichroism and Fluorescence Spectroscopy of Myelin P2 Protein and Two of its Peptides

  • Shin, Hang-Cheol;McFarlanel, Ernest F.
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.546-551
    • /
    • 1995
  • The conformation studies of myelin P2 protein and two of its major peptides were carried out using circular dichroism and fluorescence spectroscopy in water and in lipid environments. Significant conformational changes occur when the protein or peptides were bound to gangliosides. Similar effects were also found in trifluoroethanol solutions. The conformational features of P2 protein and its major peptides were discussed in relation to the environmental changes and the disease-inducing effects.

  • PDF

Quantitative analysis of gene expression by fluorescence images using green fluorescence protein

  • Park, Yong-Doo;Kim, Jong-Won;Suh, You-Hun;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.475-477
    • /
    • 1997
  • We have analyzed the fluorescence image obtaining from green fluorescence protein (GFP). In order to monitor the fluorescence of specific gene, we used the amyloid precursor protein promoter which has been known to act as a major role in the development of Alzheimer's disease. The promoter from - 3.0 kb to + 100 base pair was inserted into the gene expression monitoring GFP vector purchased from Clontech. This construct was transfected into the PC 12 and fibroblast cells and the fluorescence image was captured by two kinds of methods. One is using cheaper CCD camera and other is SIT-CCD camera. or the higher sensitivity of the fluorescence image, we developed the multiple image grabbing program. As a results, the fluorescence image by conventional CCD camera have the similar sensitivity compared with that of the SIT-camera by applying the multiple image grabbing programs. By this system. it will be possible to construct the fluorescence monitoring system with lower cost. And gene expression in real time by fluorescence image will be possible without changing the fluorescence images.

  • PDF

Miniature Fluorescence Detection System for Protein Chips by Prism (프리즘을 이용한 소형 단백질칩 분석 형광측정 시스템 개발)

  • Choi, Jae-Ho;Kim, Ho-Seong;Lee, Kook-Nyung;Kim, Eun-Mi;Kim, Yong-Kweon;Kim, Byung-Gee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2040-2042
    • /
    • 2004
  • This paper presents a miniature optical system for the fluorescence detection of the patterned protein chip. The patterned protein chip was fabricated using MEMS process. The fluorescence from the patterned protein chip was measured while varying the concentration of the BSA. The fluorescence light is separated spatially from the excitation beam using mini-size prism to increase SNR (Signal-to-Noise Ratio). The combination of prism and mirrors can convert the excitation light from the laser diode to uniform illumination on the specimen. We believe that the proposed system for fluorescence detection can be applied to rea1ization of point-of-care.

  • PDF

Fluorescence Immunoassy of HDL and LDL Using Protein A LB Film

  • Choi, Jeong-Woo;Park, Jun-Hyo;Lee, Woo-Chang;Oh, Byung-Keun;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.979-985
    • /
    • 2001
  • A fluorometric detection technique for HDL (High Density Lipoprotein) and LDL (Low Density Lipoprotein) was developed for application in a fiber-optic immunosensor using a protein A Langmuir-Blodgget (LB) film. For the fluorescence immunoassay, antibodies specific to HDL or LDL were imobilied on the protein A LB film, and a fluorescence amplification method was developed to overcome their weak fluorescence. The deposition of protein A using the LB technique was monitored using a surface pressure-are $({\pi}-A)$ curve, and the antibody immobilization of the protein A LB film was experimentally verified. The immobilized antibody was used to separate only HDL and LDL from a sample, then the fluorescence of he separated HDL or LDL was amplified. The amount of LDL or HDL was measured using the developed fiber optic fluorescence detection system. The optical properties resulting from the reaction of HDL or LDL with o-phtaldialdehyde, detection range, response time, and stability of the immunoassay were all investigated. The respective detection ranges for HDL and LDL were sufficient to diagnose the risk of coronary heart disease. The amplification step increased the sensitivity, while selective separation using the immobilized antibody led to linearity in the sensor signal. The regeneration of the antibody-immobilized substrate could produce a stable and reproducible immunosensor.

  • PDF

The Early Detection of the Protein Toxin using Sanification and Fluorescent Dye in the Field (현장에서 초음파 파쇄와 형광시약을 이용한 단백질 독소의 조기 탐지)

  • Ha, Yeon-Chul;Choi, Ki-Bong;Kim, Seong-Joo;Choi, Jung-Do
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.48-52
    • /
    • 2007
  • This study was carried out to establish the optimum disruption condition of a sonificator for the protein toxin for the purpose of developing automatic biological agent detector equipped a sonificator. One of the best-known collisional quenchers is molecular oxygen, which quenches almost all known fluorophores. The sonification does an excellent job of degassing, which decreased the quenching effect and increased the fluorescence quantity. The fluorescence measurement for the protein using 0.7 X fluorescent dye concentration and above must be done in 1 minute and the fluorescence measurement for the protein using 0.3 X fluorescent dye concentration and below has to be done between 2 and 3 minute. The fluorescence quantity of the sonificatied protein sample was much higher that of the non-sonificatied protein sample. Sonificating the sample turned out to be favorable for the fluorescence measurement when measuring at the low protein concentration.

Single C-Reactive Protein Molecule Detection on a Gold-Nanopatterned Chip Based on Total Internal Reflection Fluorescence

  • Heo, Yunmi;Lee, Seungah;Lee, Sang-Won;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2725-2730
    • /
    • 2013
  • Single C-reactive protein (CRP) molecules, which are non-specific acute phase markers and products of the innate immune system, were quantitatively detected on a gold-nanopatterned biochip using evanescent field-enhanced fluorescence imaging. The $4{\times}5$ gold-nanopatterned biochip (spot diameter of 500 nm) was fabricated by electron beam nanolithography. Unlabeled CRP molecules in human serum were identified with single-molecule sandwich immunoassay by detecting secondary fluorescence generated by total internal reflection fluorescence (TIRF) microscopy. With decreased standard CRP concentrations, relative fluorescence intensities reduced in the range of 33.3 zM-800 pM. To enhance fluorescence intensities in TIRF images, the distance between biochip surface and CRP molecules was optimally adjusted by considering the quenching effect of gold and the evanescent field intensity. As a result, TIRF only detected one single-CRP molecule on the biochip the first time.

Miniature Biochip Fluorescence Detection System with Spatial Separation of Fluorescence from Excitation Light (형광과 여기광을 공간적으로 분리하는 바이오칩용 소형 형광측정시스템)

  • Kim Ho-seong;Choi Jea-ho;Park Ju-han;Lee Kook-nyung;Kim Yong-Kweon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.378-383
    • /
    • 2005
  • We report the development of miniature fluorescence detection systems that employ miniature prism, mirrors and low coat CCD camera to detect the fluorescence emitted from 40 fluorescently-labeled protein patterns without scanner. This kind of miniature fluorescence detection system can be used in point of care. We introduce two systems, one uses prism+mirror block and the other uses prism and two mirrors. A large NA microscope eyepiece and low cost CCD camera are used. We fabricated protein chip containing multi-pattern BSA labeled with Cy5, using MEMS technology and modified the surface chemically to clean and to immobilize proteins. The measurements show that the combination of prism and mirrors can homogenize elliptical excitation light over the sample with higher optical efficiency, and increase the separation between excitation and fluorescence light at the CCD to give higher signal intensity and higher signal to noise ratio. The measurements also show that protein concentrations ranging from 10 ng/ml to 1000 ng/ml can be assayed with very small error. We believe that the proposed fluorescence detection system can be refined to build a commercially valuable hand-held or miniature detection device.