• Title/Summary/Keyword: Fluorescence analysis

Search Result 1,265, Processing Time 0.022 seconds

Fundamental Study on the Quantitative Analysis of Fluorescent Whitening Agent used for Papermaking (제지용 형광증백제의 정량분석에 대한 기초연구)

  • Lee, Ji-Young;Kim, Chul-Hwan;Lee, Hui-Jin;Gwak, Hye-Joeng
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • Fluorescent whitening agent (FWA) is a widely used chemical in paper industry, but a systematic and scientific method on FWA analysis has not been established. We performed the basic researches on the fluorescence analysis of FWA. The fluorescence of FWA was investigated using a spectrofluorometer and a spectrophotometer. When FWA solution was analyzed using the spectrofluorometer, we found that the peak wavelength of the fluorescence emission was about 440 nm and that of the fluorescence excitation was about 370 nm irrespective of FWA types. Papers dyed with an internal FWA were prepared in a laboratory and the reflectance and the fluorescence index were measured using the spectrophotometer. It was confirmed that the optimum peak wavelength of the reflectance was 440 nm and the fluorescence index calculated from the CIE whiteness with and without UV light under a light source D65 was the best indicator to measure the fluorescence of FWAs exiting in papers.

Application of Fluorescence Excitation Emission Matrices for Diagnosis and Source Identification of Watershed Pollution : A Review (유기물 형광분석법을 활용한 유역 오염 진단 및 오염원 추적: 문헌 연구)

  • Kandaddara Badalge Nipuni Dineesha;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.87-101
    • /
    • 2023
  • The constituents of a watershed control a wide range of ecosystem processes, such as, carbon sequestration, nutrient retention, and biodiversity preservation. Maintenance of a healthy watershed is advantageous to humans in many direct and indirect ways. Dissolved organic matter fluorescence analysis is one of the most commonly utilized parameters for water quality measurement, pollution source tracking, and determination of the ecological state of a watershed. Throughout the recent decades, the advancement in data processing, instrumentation, and methods has resulted in many improvements in the area of watershed study with fluorescence analysis. The current trend of coupling advanced instrumentations and new comparative parameters, such as, microplastics of different types, antibiotics, and specific bacterial contaminants have been reported in watershed studies. However, conventional methodologies for obtaining fluorescence excitation emission matrices and for calculating the fluorescence and spectral indices are preferred to advanced methods, due to their easiness and simple data collection. This review aims to gain a general understanding of the use of dissolved organic matter fluorescence analysis for diagnosis and source identification of watershed pollutions, by focusing on how the studies have utilized fluorescence analysis to improve existing knowledge and techniques in recent years.

Non-destructive identification of fake eggs using fluorescence spectral analysis and hyperspectral imaging

  • Geonwoo, Kim;Ritu, Joshi;Rahul, Joshi;Moon S., Kim;Insuck, Baek;Juntae, Kim;Eun-Sung, Park;Hoonsoo, Lee;Changyeun, Mo;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.495-510
    • /
    • 2022
  • In this study, fluorescence hyperspectral imaging (FHSI) was used for the rapid, non-destructive detection of fake, manmade eggs from real eggs. To identify fake eggs, protoporphyrin IX (PpIX)-a natural pigment present in real eggshells-was utilized as the main indicator due to its strong fluorescence emission effect. The fluorescence images of real and fake eggs were acquired using a line-scan-based FHSI system, and their fluorescence features were analyzed based on spectroscopic techniques. To improve the detection performance and accuracy, an optimal waveband combination was investigated with analysis of variance (ANOVA), and its fluorescence ratio images (588/645 nm) were created for visualization of the real eggs between two different egg groups. In addition, real and fake eggs were scanned using a one-waveband (645 nm) handheld fluorescence imager that can perform real-time scanning for on-site applications. Then, the results of the two methods were compared with one another. The outcome clearly shows that the newly developed FHSI system and the fluorescence handheld imager were both able to distinguish real eggs from fake eggs. Consequently, FHSI showed a better performance (clearer images) compared to the fluorescence handheld imager, and the outcome provided valuable information about the feasibility of using FHSI imaging with ANOVA for the discrimination of real and fake eggs.

Application of Principal Component Analysis and Self-organizing Map to the Analysis of 2D Fluorescence Spectra and the Monitoring of Fermentation Processes

  • Rhee, Jong-Il;Kang, Tae-Hyoung;Lee, Kum-Il;Sohn, Ok-Jae;Kim, Sun-Yong;Chung, Sang-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.432-441
    • /
    • 2006
  • 2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinant Escherichia coli and Saccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.

Miniaturized Fluorometer Based on Total Internal Reflector and Condensing Mirror

  • Jang, Dae-Ho;Yoo, Jae-Chern
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.81-85
    • /
    • 2013
  • A miniaturized fluorescence detection system based on total internal reflection (TIR) configuration, which is applicable to detecting the presence of biological materials labeled with fluorescence dye in micro total analysis systems (${\mu}TAS$), is proposed. In conventional fluorescence testing and analysis devices, interference between the excitation light beam and the emitted light from dyes is unavoidable. This paper presents a fluorescence detection system based on TIR configuration that allows the excitation light beam and the emitted light to be spatially perpendicular to each other so as to minimize the interference where fluorescence emission is detected at the orthogonal angle to the excitation beam. We achieved the limit of detection of about 5 nmol/L with a high linearity of 0.994 over a wide range of 6-FAM mol concentration, being comparable to that in earlier studies.

Examining Synchronous Fluorescence Spectra of Dissolved Organic Matter for River BOD Prediction (하천수 BOD 예측을 위한 용존 자연유기물질의 synchronous 형광 스펙트럼 분석)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 2007
  • Fluorescence measurements of dissolved organic matter (DOM) have the superior advantages over other analysis tools for the applications to water quality management due to their rapid analysis. It is known that protein-like fluorescence characteristics are well corelated with microbial activities and biodegradable organic matter. In this study, potential biochemical oxygen demand (BOD) predictor were explored using the fluorescence peak intensities and/or the integrated fluorescence intensities derived from synchronous fluorescence spectra and the first derivative spectra of river samples. A preliminary study was conducted using a mixture of a river and a treated sewage to test the feasibility of the approach. It was demonstrated that the better BOD predictor can be derived from synchronous fluorescence spectra and the derivatives when the difference between the emission and the excitation wavelengths (${\Delta}{\gamma}$) was large. The efficacy of several selected fluorescence parameters was rivers in Seoul. The fluorescence parameters exhibited relatively good correlation coefficients with the BOD values, ranging from 0.59 to 0.90. Two parameters were suggested to be the optimum BOD predictors, which were a fluorescence peak at a wavelength of 283 nm from the synchronous spectrum at the ${\Delta}{\gamma}$ value of 75 nm, and the integrated fluorescence intensity of the first derivatives of the spectra at the wavelength range between 245 nm and 280 nm. Each BOD predictor showed the correlation coefficients of 0.89 and 0.90, respectively. It is expected that the results of this study will provide important information to develop a real-time efficient sensor for river BOD in the future.

Fluorescence Characteristic Spectra of Domestic Fuel Products through Laser Induced Fluorescence Detection

  • Wu, Ting-Nien;Chang, Shui-Ping;Tsai, Wen-Hsien;Lin, Cian-Yi
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.18-25
    • /
    • 2014
  • Traditional investigation procedures of soil and groundwater contamination are followed by soil gas sampling, soil sampling, groundwater sampling, establishment of monitoring wells, and groundwater monitoring. It often takes several weeks to obtain the analysis reports, and sometimes, it needs supplemental sampling and analysis to delineate the polluted area. Laser induced fluorescence (LIF) system is designed for the detection of free-phase petroleum pollutants, and it is suitable for on-site real-time site investigation when coupling with a direct push testing tool. Petroleum products always contain polycyclic aromatic hydrocarbon (PAH) compounds possessing fluorescence characteristics that make them detectable through LIF detection. In this study, LIF spectroscopy of 5 major fuel products was conducted to establish the databank of LIF fluorescence characteristic spectra, including gasoline, diesel, jet fuel, marine fuel and low-sulfur fuel. Multivariate statistical tools were also applied to distinguish LIF fluorescence characteristic spectra among the mixtures of selected fuel products. This study successfully demonstrated the feasibility of identifying fuel species based on LIF characteristic fluorescence spectra, also LIF seemed to be uncovered its powerful ability of tracing underground petroleum leakages.

Concentration Range Analysis for Fluorescence Expression of Indocyanine Green (Indocyanine green 형광조영제의 형광발현을 위한 농도 범위 분석)

  • Kim, Yong Jae;Lee, Da Ae;Yoon, Ki-Cheol;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1339-1346
    • /
    • 2019
  • In the characteristic of the brain malignant, the blood vessels and tumors have the same color and shape, and the boundary distinction is not clear, Therefore, it is difficult to observe the naked eye. Because of the high invasiveness, the risk of recurrence is high. Therefore, complete resection of the tumor is essential. The method for distinguishing the boundary between blood vessels and tumors is a fluorescence contrast method using indocyanine green (ICG), a fluorescence contrast agent. In ICG, the concentration range analysis is very important because the fluorescence expression state varies depending on the concentration. However, since the analysis result of the fluorescence expression condition is insufficient according to the current concentration, this paper proposes by analyzing the initial protocol of the concentration range. 780 nm infrared light was irradiated to the ICG sample to observe the fluorescence expression through a near infrared (NIR) camera. The wavelength is measured by using a spectrum instrument (ocean view) to observe the fluorescence expression wavelength of 811nm. As a result of analyzing the mol concentration according to each sample, the fluorescence expression range was found to be 16.15-0.16M and the optimum fluorescence concentration on the brightest part was found to be 3.23-0.81M.

Comparison of Clinical Characteristics of Fluorescence in Quantitative Light-Induced Fluorescence Images according to the Maturation Level of Dental Plaque

  • Jung, Eun-Ha;Oh, Hye-Young
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • Background: Proper detection and management of dental plaque are essential for individual oral health. We aimed to evaluate the maturation level of dental plaque using a two-tone disclosing agent and to compare it with the fluorescence of dental plaque on the quantitative light-induced fluorescence (QLF) image to obtain primary data for the development of a new dental plaque scoring system. Methods: Twenty-eight subjects who consented to participate after understanding the purpose of the study were screened. The images of the anterior teeth were obtained using the QLF device. Subsequently, dental plaque was stained with a two-tone disclosing solution and a photograph was obtained with a digital single-lens reflex (DSLR) camera. The staining scores were assigned as follows: 0 for no staining, 1 for pink staining, and 2 for blue staining. The marked points on the DSLR images were selected for RGB color analysis. The relationship between dental plaque maturation and the red/green (R/G) ratio was evaluated using Spearman's rank correlation. Additionally, different red fluorescence values according to dental plaque accumulation were assessed using one-way analysis of variance followed by Scheffe's post-hoc test to identify statistically significant differences between the groups. Results: A comparison of the intensity of red fluorescence according to the maturation of the two-tone stained dental plaque confirmed that R/G ratio was higher in the QLF images with dental plaque maturation (p<0.001). Correlation analysis between the stained dental plaque and the red fluorescence intensity in the QLF image confirmed an excellent positive correlation (p<0.001). Conclusion: A new plaque scoring system can be developed based on the results of the present study. In addition, these study results may also help in dental plaque management in the clinical setting.