• Title/Summary/Keyword: Fluids-turbulence System

Search Result 54, Processing Time 0.021 seconds

BASE DRAG PREDICTION OF A SUPERSONIC MISSILE USING CFD (CFD를 이용한 초음속 유도탄 기저항력 예측)

  • Lee Bok-Jik
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.59-63
    • /
    • 2006
  • Accurate prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Loman(B-L), Spalart-Allmaras(S-A), k-$\varepsilon$, k-$\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control fins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

Computations of Supersonic Flow with Ristorcelli′s Compressible Turbulence Model (Ristorcelli의 압축성 난류 모형을 이용한 초음속 유동의 계산)

  • Park C. H;Park S. O
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. the endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency The effects of both turbulence model and convective differencing scheme on the Prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence modei on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

Numerical Simulation of Chemically Reacting Laminar and Thrbulent Flowfields Using Preconditioning Scheme (예조건화 기법을 이용한 층류 및 난류 화학반응 유동장 해석)

  • Kim Gyo-Soon;Choi Yun-Ho;Rhee Byung-Ohk;Song Bong-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.320-327
    • /
    • 2006
  • The computations of chemically reacting laminar and turbulent flows are performed using the preconditioned Navier-Stokes solver coupled with turbulent transport and multi-species equations. A low-Reynolds number $k-\varepsilon$ turbulence model proposed by Chien is used. The presence of the turbulent kinetic energy tenn in the momentum equation can materially affect the overall stability of the fluids-turbulence system. Because of this coupling effect, a fully coupled formulation is desirable and this approach is taken in the present study. Choi and Merkle's preconditioning technique is used to overcome the convergence difficulties occurred at low speed flows. The numerical scheme used for the present study is based on the implicit upwind ADI algorithm and is validated through the comparisons of computational and experimental results for laminar methane-air diffusion flame and $ H_2/O_2$ reacting turbulent shear flow. Preconditioning formulation shows better convergence characteristics than that of non-preconditioned system by approximately five times as much.

A Study on Turbulent Flow Fields around Ships (선체주위 난류유동장의 해석에 관한 연구)

  • Lee S. H.;Park J. J.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.64-70
    • /
    • 1996
  • Three dimensional turbulent flow fields around ships are simulated by a numerical method. Reynolds Averaged Navier-Stokes equations are used where Reynolds stresses are approximated by Baldwin-Lomax and Sub-Grid Scale(SGS) turbulence models. Body-fitted coordinate system is introduced to conform three dimensional ship geometries. The governing equations are discretized by a finite volume method. Temporal derivatives are approximated by the forward differencing and the convection terms are approximated by the QUICK or Kawamura scheme. The 2nd-order centered differencing is used for other spatial derivatives. Pressure and velocity fields are simultaneously iterated by the Highly Simplified Marker-And-Cell method. To verify the numerical method and turbulence models, flow fields around ships are simulated and compared to the experiments.

  • PDF

Study on the effect turbulence models for the flow through a subsonic compressor cascade (2차원 아음속 압축기 익렬유동에서의 난류모델 효과에 관한 연구)

  • Nam Gyeong-U;Baek Je-Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51-57
    • /
    • 2001
  • The eddy viscosity turbulence models were applied to predict the flows through a cascade, and the prediction performances of turbulence models were assessed by comparing with the experimental results for a controlled diffusion(CD) compressor blade. The original $\kappa-\omega$ turbulence model and $\kappa-\omega$ shear stress transport(SST) turbulence model were used as two-equation turbulence model which were enhanced for a low Reynolds number flow and the Baldwin-Lomax turbulence model was used as algebraic turbulence model. Farve averaged Wavier-Stokes equations in a two-dimensional, curvilinear coordinate system were solved by an implicit, cell-centered finite-volume computer code. The turbulence quantities are obtained by lagging when the men flow equations have been updated. The numerical analysis was made to the flows of CD compressor blade in a cascade at three different incidence angles (40. 43.4. 46 degrees). We found the reversion in the prediction performance of original $\kappa-\omega$ turbulence model and $\kappa-\omega$ SST turbulence model when the incidence angie increased. And the algebraic Baldwin-Lomax turbulence model showed inferiority to two-equation turbulence models.

  • PDF

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구(8권1호 게재논문중 그림정정))

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Navier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

Flow Simulation past a Circular Cylinder by 2-D URANS (2-D URANS에 의한 원형 실린더 주위의 와류유출 유동 수치해석)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.48-54
    • /
    • 2004
  • Vortex-shedding flows past a circular cylinder for 200≤ Re ≤ 5000 are numerically simulated with the PowerCFD code, using a finite volume method and an unstructured grid system, developed by the author. The simulation is peformed by solving the unsteady 2-D Wavier-Stokes equations with both no model and turbulence model. The resulting Reynolds number dependence of the Strouhal number and of the drag and lift coefficients is compared with both experiments and previous numerical results. It is found that, in the range of 200≤ Re ≤ 5000 the calculation method with a turbulence model is capable of producing reasonably more accurate results than that with no model for the main practically relevant parameters such as Strouhal number, drag and lift coefficients.

Numerical Study on Three-Dimensional Endwall Flow Characteristics within a Turbine Cascade Passage (터빈익렬내의 3차원 끝벽유동 특성에 대한 수치해석적 연구)

  • Myong Hyon Kook
    • Journal of computational fluids engineering
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • Three-dimensional endwall flow within a linear cascade passage of high performance turbine blade is simulated with a 3-D Wavier-Stokes CFD code (MOSA3D), which is based on body-fitted coordinate system, pressure-correction and finite volume method. The endwall flow characteristics, including the development and generation of horseshoe vortex, passage vortex, etc. are clearly simulated, consistent with the generally known tendency. The effects of both turbulence model and convective differencing scheme on the prediction performance of endwall flow are systematically analyzed in the present paper. The convective scheme is found to have stronger effect than the turbulence model on the prediction performance of endwall flow. The present simulation result also indicates that the suction leg of the horseshoe vortex continues on the suction side until it reaches the trailing edge.

COMPUTATION OF TURBULENT NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (타원혼합 이차모멘트 모델을 사용한 난류 자연대류 해석)

  • Choi, S.K.;Han, J.W.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper a computation of turbulent natural convection in enclosures with the elliptic-blending based differential and algebraic flux models is presented. The primary emphasis of the study is placed on an investigation of accuracy of the treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for the turbulent natural convection flows. The turbulent heat fluxes in this study are treated by the elliptic-blending based algebraic and differential flux models. The previous turbulence model constants are adjusted to produce accurate solutions. The proposed models are applied to the prediction of turbulent natural convections in a 1:5 rectangular cavity and in a square cavity with conducting top and bottom walls, which are commonly used for validation of the turbulence models. The relative performance between the algebraic and differential flux model is examined through comparing with experimental data. It is shown that both the elliptic-blending based models predict well the mean velocity and temperature, thereby the wall shear stress and Nusselt number. It is also shown that the elliptic-blending based algebraic flux model produces solutions which are as accurate as those by the differential flux model.