• Title/Summary/Keyword: Fluidized bed heat exchanger

Search Result 57, Processing Time 0.033 seconds

A Study on Prediction Model of Heat Transfer Coefficient in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 고밀도 순환유동층 열교환기의 열전달계수에 대한 예측모델 연구)

  • Park, Sang-Il
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.288-293
    • /
    • 2005
  • The pressure distribution and heat transfer coefficient were measured at room temperature in the high suspension density CFB heat exchanger with multiple vertical tubes and the effective density of CFB was determined. The theoretical model for predicting heat transfer coefficient was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement between them.

  • PDF

A Study on Prediction Model of Flow and Heat Transfer in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 순환유동층 열교환기의 유동 및 전열성능 예측모텔 연구)

  • Park, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.263-268
    • /
    • 2007
  • The pressure drop and heat transfer coefficient were measured at room temperature in a CFB heat exchanger with multiple vertical tubes. The circulation rate of solid particles was also measured. The theoretical model for predicting heat transfer coefficient using the solid flowrate was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement.

Analysis of Fluidization in a Fluidized Bed External Heat Exchanger using Barracuda Simulation (바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석)

  • Lee, Jongmin;Kim, Dongwon;Park, Kyoungil;Lee, Gyuhwa
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.642-650
    • /
    • 2020
  • In general, the circulation path of the fluidized particles in a CFB (Circulating Fluidized Bed) boiler is such that the particles entrained from a combustor are collected by a cyclone and recirculated to the combustor via a sealpot which is one of non-mechanical valves. However, when a fluidized bed heat exchanger (FBHE) is installed to additionally absorb heat from the fluidized particles, some particles in the sealpot pass through the FBHE and then flow into the combustor. At this time, in the FBHE operated in the bubbling fluidization regime, if the heat flow is not evenly distributed by poor mixing of the hot particles (800~950 ℃) flowing in from the sealpot, the heat exchanger tubes would be locally heated and then damaged, and the agglomeration of particles could also occur by formation of hot spot. This may affect the stable operation of the circulating fluidized bed. In this study, the unevenness of heat flow arising from structural problems of the FBHE of the domestic D-CFB boiler was found through the operating data analysis and the CPFD (Computational Particle Fluid Dynamics) simulation using Barracuda VR. Actually, the temperature of the heat exchanger tubes in the FBHE showed the closest correlation with the change in particle temperature of the sealpot. It was also found that the non-uniformity of the heat flow was caused by channeling of hot particles flowing in from the sealpot. However, it was difficult to eliminate the non-uniformity even though the fluidizing velocity of the FBHE was increased enough to fluidize hot particles vigorously. When the premixing zone for hot particles flowing in from the sealpot is installed and when the structure is changed through the symmetrization of the FBHE discharge line for particles reflowing into the combustor, the particle mixing and the uniformity of heat flow were found to be increased considerably. Therefore, it could be suggested that the structural modification of the FBHE, related to premixing and symmetric flow of hot particles, is an alternative to reduce the non-uniformity of the heat flow and to minimize the poor particle mixing.

Analysis for Particle Motion of Vertical Rayleigh flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.755-760
    • /
    • 2006
  • The exhaust gas with solid particle goes through the riser in both particle circulating type and circulating fluidized bed type heat exchanger to recover the heat. During heat transfer, gas velocity in vertical riser decreases as viscosity of exhaust gas decreases. In this case, when the particle size is fixed, sometimes the exhaust gas happens to have lower velocity which prohibit them to go out of the riser. In this paper the particle motion in vertical Rayleigh flow was studied. The behavior of heat transfer was investigated by means of velocity and temperature distribution. The result from numerical analysis was validated by the experimental results. Fortran code was used to analyze the particle motion in vertical Rayleigh flow.

  • PDF

Heat Transfer to a Downward Moving Solid Particle Bed Through a Circular Tube (원형튜브내에서 이동중인 고체입자층의 열전달 특성연구)

  • 이금배;박상일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1551-1558
    • /
    • 1994
  • An experiment was conducted to investigate whether an equation of heat transfer coefficient derived form energy equation of two-phase plug flow can be actually applied to the industrial field. The heat is constantly transfered to the sand beds from the wall of heat exchanger while the sand moves down through cylindrical heat exchanger by gravity from feed hooper. To increase heat transfer, turbulators such as glass ball and steel pipe packings were used. In addition, the experiment in the case of fluidizing the sand beds was also carried out. The temperatures of the sand beds and the wall were measured along the heat exchanger axis. The density and porosity of the sand beds were also measured. The deviations of the mean velocity of sands from the velocity on the wall surface because of the slip conditions on the wall were negligible (within 3%). The heat transfer coefficients when the turbulators were used and when the sand beds were fluidized were found to be much greater than those of the plain plug flow.

Characteristics of heat transfer and bubble around horizontal tube in a fluidized bed heat exchanger (유동층 열교환기의 수평관에서 열전달 및 기포특성)

  • 김성원;안정렬;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.97-100
    • /
    • 2000
  • 유동층 열교환기 (Fluidized Bed Heat Exchanger; FBHE) 는 온도 균일성이라는 유동층의 특징을 이용하여 적당한 전열면적을 갖는 열교환관을 층 내 설치하여 일정한 양의 열을 전열시키는 것으로, 최근 순환유동층 연소로의 scale-up 을 통한 열용량 증대와 함께 고온의 재순환물질로부터 열을 회수, 연소로의 온도제어 및 열회수율의 극대화를 얻고자 재순환부에 연결하여 사용하고 있다. 또한, 가압순환유동층의 개발과 더불어 유효열전달 면적의 증대를 통한 상대적인 연소로 소형화를 위해 채택되고 있다. 특히, 유동층 열교환기는 전체 공정에서 20-60% 의 열을 회수할 수 있어, 열전달에 있어 매우 중요한 역할을 차지한다.(중략)

  • PDF