• Title/Summary/Keyword: Fluidity retention

Search Result 15, Processing Time 0.025 seconds

Liquidity and Mechanical Properties of Concrete by Fluidity Retention Agent Mix Rate Change (유지제 혼입율 변화에 따른 콘크리트의 유동성 및 역학적 특성)

  • Park, Byung-Kwan;Choi, Sung-Yong;Pei, Chang-Chun;No, Dong-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.89-92
    • /
    • 2008
  • This research analyzed the basic characteristics of unhardened concrete and the compression strength characteristics of hardened concrete according to liquidity retention agent mix rate change to improve the liquidity fluidity retention performance of high performance concrete, and produced the following results. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, which increased fluidity retention agent mix rate, slump flow decreased, and in the case of slump flow according to the progress time change by the fluidity retention agent mix rates, the more fluidity retention agent mix rate increased, the lower slump flow change rate became. The moment fluidity retention agent is added according to fluidity retention agent mix rate change, fluidity retention agent mix rate increased compared to non-mixture of fluidity retention agent, and the air amount by progress time change by the fluidity retention agent mix rates slightly increased, however target range is still met and unit volume mass is inversely proportional to air amount. Compression strength according to age progress by the fluidity retention agent mix rates was shown to increase slightly with increase in fluidity retention agent mix rate, and yet the difference was not significant.

  • PDF

Fluidity Retention of Cement-Based Composites Using High range water reducing AE agent (고성능AE감수재를 사용한 시멘트복합체의 유동성 유지성능)

  • 김기형;김인수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.93-98
    • /
    • 1998
  • Fluidity retention of concrete used high range water reducing AE agent(HWAE) is varied according to type, dosage amount and dosing method of HWAE. The type and substitution ratio of mineral admixture also have influence on the fluidity retention of concrete using HWAE. For the purpose of improving the fluidity retention in concrete used HWAE, 3 types of HWAE and ground granulated blast furnace slag(SG) are applied in cement-based composites such as cement paste, mortar and concrete respectively. According to using the HWAE of naphthalene sulfonates and SG, the fluidity retention of mortar and concerete is improving the fluidity retention and strength of concrete regardless of type of HWAE.

  • PDF

A Study for Improving the Fluidity Retention in Concrete Used High Range Water Reducing AE Agent (고성능AE감수제 사용 콘크리트의 유동성 유지성능 향상을 위한 연구)

  • 김기형
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.313-323
    • /
    • 1998
  • Fluidity retention of concrete used high range water reducing AE agent(HWAE) is varied according to main component, dosage amount and dosing method of HWAE. The type and substitution ratio of mineral admixture also have influence on the fluidity retention of concrete used HWAE. In this study, for the purpose of improving the fluidity retention in concrete used HWAE. 3 types of HWAE and ground granulated blast furnace slag(SG) are used in cement paste, mortar and concrete varing dosage amount and dosing time of HWAE and substitution ratio of SG respectively. According to using the HWAE of naphthalene sulfonates and SG, the fluidity retention of mortar and concrete is improved remarkably. And after 30 min, dosing method of HWAE is very effective in improving the fluidity retension and strength of concrete regardless of type of HWAE.

Experimental study on proerties of concrete with three-hours-fluidity-retention performance in extremely hot weather conditions (극서환경에서 3시간 유지성능을 가진 콘크리트 특성에 관한 실험적 연구)

  • Kim, Young-Sun;Seok, Won-Kyun;Kim, Jung-Jin;Ki, Jun-Do;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.128-129
    • /
    • 2018
  • The high performace water reducing agent with three-hours-fluidity-retention performance is developed for the purpose of entering into the global market belonging to extreme environment such as Southeast Asia and the Middle East. In this study, the fresh and mechanical properties of the concrete with three-hours-fluidity-retention performance are presented.

  • PDF

Experimental Study on Properties of High Strength Concrete with three-hours-fluidity-retention Performance in Extremely Hot Weather Conditions (극서환경에서 3시간 유지성능을 갖는 초유지 고강도 콘크리트의 특성에 관한 실험적 연구)

  • Cho, Hong-Bum;Ki, Jun-Do;Kim, Kwang-Ki;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.201-202
    • /
    • 2019
  • The high performace water reducing agent with three-hours-fluidity-retention performance is developed for the purpose of entering into the global market belonging to extreme environment such as Southeast Asia and the Middle East. In this study, the fresh and mechanical properties of the high strength concrete with three-hours-fluidity-retention performance are evaluated by making mock-up members in Vietnam.

  • PDF

Fluidity and Setting Properties of Cement Paste by Adding of Fluoro Anhydrite and Fly Ash (불산 무수석고와 플라이 애쉬를 첨가한 시멘트 페이스트의 유동성 및 응결특성)

  • 노재성;김도수;홍성수;임계규;임헌성
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1261-1267
    • /
    • 1997
  • Four kids of powder admixtures(A, B, C, D) based on anhydrite were manufactured by mixing at a fixed rate of II-anhydrite, fly ash and active silica as an industrial by-product. Fluidity properties of cement paste such as mini-slump, apparent viscosity with elapsed time, as well as setting time of cement pastes of these admixtures substituted up to 11wt% of cement were compared to those of cement paste(SS) substisuted by marketed high-strength powder admixture(S). Among these powder admixtures, the fluidity of cement pastes(PA, PC) substituted by A and C powder admixtures manufactured from II-anhydrite and fly ash had an excellent property than that of cement paste substituted by marketed powder admixture and also a good fluidity-retention effect with elapsed time by adding of superplasticizer. The setting time of cement paste substituted by powder admixtures based on anhydrite slightly retarded than that of cement paste substituted by marketed powder admixture.

  • PDF

A Study on the Fluidity Retention of Cement Paste Added by Naphthalene Sulfonated Condensate and Polycarboxylic Acid Admixture (나프탈렌술폰산축합물과 폴리카르본산계 혼화제가 첨가된 시멘트 페이스트의 유동성 유지에 관한 연구)

  • 노재성;홍성수;김도수
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.189-199
    • /
    • 1995
  • Naphthalene sulfonated condensate has been widely used as a superplasticizer for cement and concrete, but the application was limited due to its large slump loss with elapsed time. To complement this demerit of NSF, polycarboxylic acid copolymer from nlaleic anhydride and acryl~c acid(MA) was synthesized to retain the mobility of cement and concrete, and then mixed with NSF. The physical properties, such as fluidity, fluidityretention and rheology, were measured by applying these admixtures to cement paste as a function of elapsed time. And also compressive strength of mortar was measured with curing time. NIv-l and NM-2 containing 10, 20 wt% of MA respectively had a excellent fluidity and a fluidity- retention. In rheological property, the increases of shear stress and viscosity with elapsed time were delayed with the increasing of shear rate in cornparision with NSF only. The marked slump loss of cement paste could be controlled by these admixture. Also the added ainount of admixture and the ratio of water to cement affected these properties.

A Study on the Dispersion Effects and Slump for Elapsed Time of Cement Admixed with Naphthalene Sulfonated Condensate and Maleic Anhydride Copolymer (나프탈렌술폰산축합물과 무수말레인산계 공중합체를 첨가한 시멘트의 분산효과 및 경시변화에 관한 연구)

  • 김도수;김은영;홍성수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.94-99
    • /
    • 1995
  • Naphthalene sulfonated condensatd(NSF) has been widely using for the superplasticizing of ement and concrete. But NSF has a very large mobility loss with elapsed tiom. To retain mobility of NSF during a certain time, maleic anhydride and acrylic acid copolymer(MA) was polymerized and mixed with NSF in order to perpare admixture holding mobility-retention property of cement. By applying this admixture for ement paste, we examined the fluidity and mobility retention property as a function to elapsed time and measured the compressive strength of mortar with curing time. As a result, NSF containing 20wt% of MA showed very excellent fluidity and mobility-retention property. These properties were affected by the added amount of admixture and the ratio of water to cement.

  • PDF

Fluidity of Cement Paste with Air-Cooled Blast Furnace Slag (고로 서냉슬래그 혼합 시멘트 페이스트의 유동성)

  • Lee, Seung-Heun;Park, Seol-Woo;Yoo, Dong-Woo;Kim, Dong-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.584-590
    • /
    • 2014
  • Air-cooled slag showed grindability approximately twice as good as that of water-cooled slag. While the studied water-cooled slag was composed of glass as constituent mineral, the air-cooled slag was mainly composed of melilite. It is assumed that the sulfur in air-cooled slag is mainly in the form of CaS, which is oxidized into $CaS_2O_3$ when in contact with air. $CaS_2O_3$, then, is released mainly as $S_2O{_3}^{2-}$ion when in contact with water. However, the sulfur in water-cooled slag functioned as a constituent of the glass structure, so the$S_2O{_3}^{2-}$ ion was not released even when in contact with water. When no chemical admixture was added, the blended cement of air-cooled slag showed higher fluidity and retention effect than those of the blended cement of the water-cooled slag. It seems that these discrepancies are caused by the initial hydration inhibition effect of cement by the $S_2O{_3}^{2-}$ ion of air-cooled slag. When a superplasticizer is added, the air-cooled slag used more superplasticizer than did the blast furnace slag for the same flow because the air-cooled slag had higher specific surface area due to the presence of micro-pores. Meanwhile, the blended cement of the air-cooled slag showed a greater fluidity retention effect than that of the blended cement of the water-cooled slag. This may be a combined effect of the increased use of superplasticizer and the presence of released $S_2O{_3}^{2-}$ ion; however, further, more detailed studies will need to be conducted.

Improvement of Properties in High Strength Concrete Using Fly ash and Gypsum (플라이 애시 및 석고를 활용한 고강도용 콘크리트의 성능개선)

  • 김기형;최재진;최연황
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.89-94
    • /
    • 1999
  • The workability of high strength concrete using high range water reducing admixture is varied rapidly according to elapsed time. For using the high strength concrete in situ, careful caution on workability is necessary. By using fly ash as a admixture, the slump loss of concrete can be reduced considerably, but the early strength of concrete used fly ash is smaller than that not used fly ash. For the purpose of elevating the utilization of fly ash on high strength concrete, the high fluidity retention and the strength development in early age are necessary in concrete used fly ash. In this study, to improve the fluidity retention and to acquire strength development on concrete used fly ash, the gypsum is applied.

  • PDF