• Title/Summary/Keyword: Fluid-structure interaction(FSI) analysis technique

Search Result 29, Processing Time 0.025 seconds

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -II : Consideration of Effects on Impact Response Behaviors- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -II : 내충격 응답거동에 미치는 영향 고찰-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.735-749
    • /
    • 2008
  • For the development of the original technique of structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In the previous study, the wet drop impact response analyses of CCS structure in membrane Mark III type LNG carriers were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. In this study, the characteristics of structural shock response behaviors of CCS structure were sufficiently figured out by careful examinations of the effects of specimen weight, drop height, incident angle, corrugation and stiffness of inner hull on its shock response behaviors. The shock response analysis of upward shooting fluid to inner hull was performed, and the reason of faster strain response than shock pressure one was also figured out.

Wind Load Induced Vibration Analysis for Tall Structure (고층건물의 풍하중 유발 진동해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Dong-Man;Kim, Jong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.658-659
    • /
    • 2009
  • In this study, fluid-induced vibration (FIV) analyses have been conducted for tall building structure. In order to investigate the aeroelastic responses of tall building due to wind load, advanced computational analysis system based n computational fluid dynamics(CFD) and computational structural dynamics (CSD) has been developed. Fluid domains are modeled using the computational grid system with local grid deforming technique. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of tall structure for fluid-structure interaction (FSI) problems. Detailed aeroelastic responses and results are presented to show the physical phenomenon of the tall building.

  • PDF

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Analysis of Vortex Vibration by Using the FSI Technique (FSI 기법을 이용한 와류진동 해석)

  • Kim, Dae-Geun;Kim, Sung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.754-758
    • /
    • 2010
  • 케이블 교량에서 발생하는 사장케이블의 진동현상에 대한 현상학적 특성을 명확히 이해해야, 사장케이블의 적합한 제진설계가 가능하다. 본 연구에서는 유체의 흐름과 구조물의 진동을 동적으로 연계하여 해석하기 위하여, ADINA의 CFD 및 Structure 코드를 동적으로 연계하는 FSI(Fluid Flow with Structure Interaction) 기법을 이용하였다. 바람으로 인해 이중원형실린더의 풍상측과 풍하측 실린더에서는 와류가 방출되면서 외력이 작용하게 되며, 이러한 공기력은 풍하측 실린더의 고유진동 운동과 함께 와류진동현상을 유발한다. 본 연구에서는 풍하측 실린더의 와류진동 현상의 해석에 주안점을 두었다. 본 연구에서는 흐름의 레이놀즈수와 이중원형실린더에 대한 바람의 입사각을 변화시키며 풍하측 실린더에서 발생하는 와류진동의 크기를 분석하였다. 본 연구결과, 유입풍속 및 바람의 입사각에 따라 이중원형실린더에서 발생하는 일반적인 와류방출현상과 풍하측 실린더에 작용하는 공기력 및 변위양상을 예측할 수 있었다. 특히, 바람의 입사각이 $15^{\circ}$인 경우에는 풍하측 실린더에서 방출되는 와류로 인해 풍하측 실린더에는 비대칭의 공기력이 작용하며, 이는 풍하측 실린더가 2사분면에서 4사분면 방향으로 진동하는 원인이 되는 것으로 판단된다.

  • PDF

Marine Accident Cause Investigation using M&S System (고도 정밀 M&S 시스템을 이용한 해난사고 원인규명)

  • Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.36-37
    • /
    • 2014
  • It is necessary to develop highly sophisticated Modeling & Simulation (M&S) system for the scientific investigation of marine accident causes and for the systematic reproduction of accidental damage procedure. To ensure an accurate and reasonable prediction of marine accidental causes, such as collision, grounding and flooding, full-scale ship M&S simulations would be the best approach using hydrocode, such as LS-DYNA code, with its Fluid-Structure Interaction (FSI) analysis technique. The objectivity of this paper is to present three full-scale ship collision, grounding and flooding simulation results of marine accidents, and to show the possibility of the scientific investigation of marine accident causes using highly sophisticated M&S system.

  • PDF

Global Ship Vibration Analysis by Using Distributed Fluid Added Mass at Grid Points (유체부가수질량 절점분포 방법에 의한 전선진동해석)

  • Kim, Young-Bok;Choi, Moon-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • Recently, the ship vibration analysis technique has been well set up by using FEM. The methods considering the hydrodynamic added mass and damping of the fluid surrounding a floating ship have been well developed, so that they can be calculated by using the commercial package FEM programs such as MSC/NASTRAN, ADINA and ANSYS. Especially, MSC/NASTRAN has the functions to consider the fluid in tanks(MFLUID) and to solve the Fluid-Structure Interaction(FSI) problem(DMAP). In this study, the global ship vibration with considering the added mass distributed at the grid points on the wetted shell surface is introduced to. In the new method, the velocity potentials of the fluid surrounding a floating ship are calculated by solving the Lapalce equation using the Boundary Element Method(BEM), and the point mass is obtained by integrating the potentials at the points. Then, the global vibration analyses of the ship structure with distributed added mass on the wetted surface are carried out for an oil/chemical tanker. During the future sea trial, the results will be confirmed by measurement.

Numerical Study of Ablation Phenomena of Flame Deflector

  • Lee, Wonseok;Yang, Yeongrok;Shin, Sangmok;Shin, Jaecheol
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.10-18
    • /
    • 2021
  • A flame deflector prevents a launch system from thermal damage by deflecting the exhaust flame of the launch vehicle. During the deflection of the flame, the flame deflector is subjected to a high-temperature and high-pressure flow, which results in thermal ablation damage at the surface. Predicting this ablation damage is an essential requirement to ensure a reliable design. This paper introduces a numerical method for predicting the ablation damage phenomena based on a one-way fluid-structure interaction (FSI) analysis. In the proposed procedure, the temperature and convective heat transfer coefficient of the exhaust flame are calculated using a fluid dynamics analysis, and then the ablation is calculated using a finite element analysis (FEA) based on the user-subroutine UMESHMOTION and Arbitrary Lagrangian-Eulerian (ALE) adaptive mesh technique in ABAQUS. The result of such an analysis was verified by comparison to the ablation test result for a flame deflector.

Crashworthy Safety Assessment of High Speed Passenger Ship with Underwater Floating Matter (쾌속여객선의 수중부유물과의 내충돌 안전성 평가)

  • Lee, Sang-Gab;Lee, Jae-Seok;Baek, Yun-Hwa;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.30-31
    • /
    • 2009
  • Through the full scale ship collision response analysis of high speed passenger ship with underwater floating matters, the objective of this study is to perform the crashworthy safety assessment of its hull and passengers. For this safety assessment, diverse collision scenarios could be established through the thorough understanding of damage mechanisms due to the collision of its hydrofoil system with underwater floating matter examining the damage informations of its hull and passengers from the collision accidents, and through the estimation of the damages of its hull and passenger. The next step, crashworthy safety assessment of its hull and passengers, was carried out by the collision response analyses of high speed passenger ship with underwater floating matter using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code in consideration of surrounding water, and using local zooming analysis technique.

  • PDF