• Title/Summary/Keyword: Fluid-structure Integration

Search Result 81, Processing Time 0.029 seconds

A Far Field Solution of the Slowly Varying Drift Force on the Offshore Structure in Bichromatic Waves-Three Dimensional Problems

  • Lee, Sang-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A far field approximate solution of the slowly varying force on a 3 dimensional offshore structure in gravity ocean waves is presented. The first order potential, or at least the far field form of the Kochin function, of each frequency wave is assumed to be known. The momentum flux of the fluid domain is formulated to find the time variant force acting on the floating body in bichromatic waves. The second order difference frequency force is identified and extracted from the time variant force. The final solution is expressed as the circular integration of the product of Kochin functions. The limiting form of the slowly varying force is identical to the mean drift force. It shows that the slowly varying force components caused by the body disturbance potential can be evaluated at the far field.

A Numerical Study of NAND Flash Memory on the cooling effect (낸드플래시 메모리의 냉각효과에 관한 수치적 연구)

  • Kim, Ki-Jun;Koo, Kyo-Woog;Lim, Hyo-Jae;Lee, Hyouk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117-123
    • /
    • 2011
  • The low electric power and high efficiency chips are required because of the appearance of smart phones. Also, high-capacity memory chips are needed. e-MMC(embedded Multi-Media Card) for this is defined by JEDEC(Joint Electron Device Engineering Council). The e-MMC memory for research and development is a memory mulit-chip module of 64GB using 16-multilayers of 4GB NAND-flash memory. And it has simplified the chip by using SIP technique. But mulit-chip module generates high heat by higher integration. According to the result of study, whenever semiconductor chip is about 10 $^{\circ}C$ higher than the design temperature it makes the life of the chip shorten more than 50%. Therefore, it is required that we solve the problem of heating value and make the efficiency of e-MMC improved. In this study, geometry of 16-multilayered structure is compared the temperature distribution of four different geometries along the numerical analysis. As a result, it is con finned that a multilayer structure of stair type is more efficient than a multilayer structure of vertical type because a multi-layer structure of stair type is about 9 $^{\circ}C$ lower than a multilayer structure of vertical type.

  • PDF

Numerical Requirements for the Simulation of Detonation Cell Structures (데토네이션 셀 구조 모사를 위한 수치적 요구 조건)

  • Choi Jeong-Yeol;Cho Deok-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-14
    • /
    • 2006
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma} $ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

Design of Optimal Thermal Structure for DUT Shell using Fluid Analysis (유동해석을 활용한 DUT Shell의 최적 방열구조 설계)

  • Jeong-Gu Lee;Byung-jin Jin;Yong-Hyeon Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.641-648
    • /
    • 2023
  • Recently, the rapid growth of artificial intelligence among the 4th industrial revolution has progressed based on the performance improvement of semiconductor, and circuit integration. According to transistors, which help operation of internal electronic devices and equipment that have been progressed to be more complicated and miniaturized, the control of heat generation and improvement of heat dissipation efficiency have emerged as new performance indicators. The DUT(Device Under Test) Shell is equipment which detects malfunction transistor by evaluating the durability of transistor through heat dissipation in a state where the power is cut off at an arbitrary heating point applying the rating current to inspect the transistor. Since the DUT shell can test more transistor at the same time according to the heat dissipation structure inside the equipment, the heat dissipation efficiency has a direct relationship with the malfunction transistor detection efficiency. Thus, in this paper, we propose various method for PCB configuration structure to optimize heat dissipation of DUT shell and we also propose various transformation and thermal analysis of optimal DUT shell using computational fluid dynamics.

A Study on the Degree of Need of Human Structure and Function Knowledge in Clinical Nurses (기초간호자연과학의 인체구조와 기능 내용별 필요도에 대한 연구)

  • Choe, Myoung-Ae;Byun, Young-Soon;Seo, Young-Sook;Hwang, Ae-Ran;Kim, Hee-Seung;Hong, Hae-Sook;Park, Mi-Jung;Choi, Smi;Lee, Kyung-Sook;Seo, Wha-Sook;Shin, Gi-Soo
    • Journal of Korean Biological Nursing Science
    • /
    • v.1 no.1
    • /
    • pp.1-24
    • /
    • 1999
  • The purpose of this study was to define the content of requisite human structure and function knowledge needed for clinical knowledge of nursing practice. Subjects of human structure and function were divided into 10 units, and each unit was further divided into 21 subunits, resulting in a total of 90 items. Contents of knowledge of human structure and function were constructed from syllabus of basic nursing subjects in 4 college of nursing, and textbooks published by nurse scholars prepared with basic nursing sciences. The degree of need of 90 items was measured with a 4 point scale. The subjects of this study were college graduated 136 nurses from seven university hospitals in Seoul and three university hospitals located in Chonnam Province, Kyungbook Province, and Inchon. They have been working at internal medicine ward, surgical ward, intensive care unit, obstetrics and gynecology ward, pediatrics ward, opthalmology ward, ear, nose, and throat ward, emergency room, rehabilitation ward, cancer ward, hospice ward, and their working period was mostly under 5 years. The results were as follows: 1. The highest scored items of human structure and function knowledge necessary for nursing practice were electrolyte balance, blood clotting mechanism and anticoagulation mechanism, hematopoietic function, body fluid balance, function of plasma, and anatomical terminology in the order of importance. The lowest scored items of human structure and function knowledge necessary for nursing practice was sexual factors of genetic mutation. 2. The highest order of need according to unit was membrane transport in the living unit, anatomical terminology in movement and exercise unit, mechanism of hormone function in regulation and integration unit, component and function of blood in oxygenation function unit, structure and function of digestive system in digestive and energy metabolism unit, temperature regulation in temperature regulation unit electrolyte balance in body fluid and electrolyte unit, concept of immunity in body resistance unit, and genetics terminology in genetics unit. The highest order of importance according to subunit was membrane transportation in cell subunit, classification of tissues in tissue unit, function of skin and skin in skin subunit, anatomical derivatives of the skeleton subunit, classification of joints in joint subunit, an effect of exercise on muscles in muscle subunit, function of brain in nervous system subunit, special sense in sensory subunit mechanism of hormone function in endocrine subunit, structure and function of female reproductive system in reproductive system unit, structure and function of blood in blood unit, structure of heart, electrical and mechanical function in cardiovascular system unit, structure of respiratory system in respiratory system subunit, structure and function of digestive system in digestive system subunit, hormonal regulation of metabolism in nutrition and metabolism subunit, function of kidney in urologic system subunit, electolyte balance in body fluid, electolyte and acid-base balance subunit. 3. The common content of human structure and function knowledge need for all clinical areas in nursing was structure and function of blood, hematopoietic function, function of plasm, coagulation mechanism and anticoagulation mechanism, body fluid, electrolyte balance, and acid-base balance. However, the degree of need of each human structure and function knowledge was different depending on clinical areas. 4. Significant differences in human structure and function knowledge necessary for nursing practice such as skin and derivatives of the skin, growth and development of bone, classification of joint, classification of muscle, structure of muscle, function of muscle, function of spinal cord, peripheral nerve, structure and function of pancrease, component and function of blood, function of plasma, structure and function of blood, hemodynamics, respiratory dynamics, gas transport, regulation of respiration, chemical digestion of foods, absorption of foods, characteristics of nutrients, metabolism and hormonal regulation, body energy balance were demonstrated according to the duration of work. 5. Significant differences in human structure and function knowledge necessary for nursing practice such as classification of tissue, classification of muscles, function of muscles, muscle metabolism, classification of skeletal muscles, classification of nervous system, neurotransmitters, mechanism of hormone function, pituitary and pituitary hormone, structure and function of male reproductive organ, structure and function of female reproductive organ, component and function of blood, function of plasma, coagulation mechanism and anticoagulation mechanism, gas exchange, gas transport, regulation of respiration, characteristics of nutrients, energy balance, function of kidney, concept of immunity, classification and function of immunity were shown according to the work area. Based on these findings, all the 90 items constructed by Korean Academic Society of Basic Nursing Science should be included as contents of human structure and function knowledge.

  • PDF

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.167-174
    • /
    • 2008
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

Aeroelastic Response Analysis of 3D Wind Turbine Blade Considering Rotating and Flow Separation Effects (회전과 유동박리효과를 고려한 3차원 풍력발전 터빈 블레이드의 공탄성 응답 해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Kim, Dong-Man;Kim, Yu-Sung;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.68-75
    • /
    • 2009
  • In this study, aeroelastic response analyses have been conducted for a 3D wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Vibration analyses of rotating wind-turbine blade have been conducted using the general nonlinear finite element program, SAMCEF (Ver.6.3). Reynolds-averaged Navier-Stokes (RANS)equations with spalart-allmaras turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous Mach contour on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating wind-turbine blade model.

  • PDF

Dynamic response of concrete gravity dams using different water modelling approaches: westergaard, lagrange and euler

  • Altunisik, A.C.;Sesli, H.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.429-448
    • /
    • 2015
  • The dams are huge structures storing a large amount of water and failures of them cause especially irreparable loss of lives during the earthquakes. They are named as a group of structures subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on the dam should be reflected more accurately in the structural analyses to determine the real behavior as soon as possible. Different mathematical and analytical modelling approaches can be used to calculate the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the dynamic response of concrete gravity dams using different water modelling approaches such as Westergaard, Lagrange and Euler. For this purpose, Sariyar concrete gravity dam located on the Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main principals and basic formulation of all approaches are given. After, the finite element models of the dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To determine the structural response of the dam, the linear transient analyses are performed using 1992 Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses and maximum-minimum principal strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches.

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Lin, Han;Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.8-17
    • /
    • 2009
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

Evaluation of Rectangular Section Flutter Derivatives by CFD (CFD에 의한 사각단면의 플러터계수 산출)

  • Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.693-700
    • /
    • 2003
  • An evaluation method for flutter derivatives is proposed, using indicial functions of structural members produced by Computational Fluid Dynamics (CFD). Flutter derivatives are obtained by Fourier integration of indicial functions. Instead of direct simulation of oscillating objects, only the calculation of time-dependent lift and moment variations of fixed objects with constant attack angle are necessary.The Finite Element Method (FEM) is developed as a tool for the numerical method. For two rectangular sections having different aspect ratios, the numerical analysis and wind tunnel test are carried out to inspect the adequacy of this study. The results proved to be good, and they could be used for a preliminary design.