• 제목/요약/키워드: Fluid-Structure Integration

검색결과 80건 처리시간 0.024초

Seismic response analysis of an oil storage tank using Lagrangian fluid elements

  • Nagashima, Toshio;Tsukuda, Takenari
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.389-410
    • /
    • 2013
  • Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is formulated based on the displacement finite element method considering only volumetric elasticity and its element stiffness matrix is derived by using one-point integration method in order to avoid volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational condition for fluid motion and modifies element mass matrices through the projected mass method to suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell elements, respectively, and the transient response of the floating roof structure or the free surface are evaluated by implicit direct time integration method. The results of seismic response analyses are compared with those by other method and the validation of the present analysis using three-dimensional Lagrangian fluid finite elements is shown.

유체요소를 이용한 직사각형 유체 저장구조물의 지진해석 (Seismic Analysis of Rectangular Liquid Storage Structures Ssing Fluid Elements)

  • 김영석;김제민;윤정방
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.46-54
    • /
    • 1992
  • In this paper, behavior of rectangular storage structures under earthquake loadings are investigated. Linear sloshing is assumed in this study. The effect of the wall flexibility is considered. Eulerian and lagrangian approaches are presented. The Eulerian approach is carried out by solving the boundary value problem for the fluid motion. In the lagrangian approach, the fluid as well as the storage structure is modelled by the finite element method. The fluid region is discretized by using fluid elements. The (1 $\times$ 1)-reduced integration is carried out for constructing the stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the response spectra method. The numerical results show that the fluid forces on the wall obtained by two approaches are in good agreements. By including the effect of the wall flexibility, the forces due to fluid motion can be increased very significantly.

  • PDF

유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가 (Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation)

  • 오세원;김동현;김유성;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF

고체 로켓 모터 유동-구조 연성 해석을 위한 침식연소 모델링 (Modeling of Erosive Burning for Fluid-Structure Integration Analysis of Solid Rocket Motor)

  • 이정섭;진정근;김신회;정규동
    • 한국추진공학회지
    • /
    • 제20권4호
    • /
    • pp.9-18
    • /
    • 2016
  • 본 논문에서는 고체 로켓 모터의 유동-구조 연성 해석을 위해서 추진제 침식 연소 모델링 및 영향인자에 대한 분석을 수행하였다. Lenoir & Robillard 모델식을 적용해 침식연소 현상을 예측하기 위해서 침식연소에 영향을 줄 수 있는 인자를 고려하여 침식연소 모사모터의 제작, 시험 및 분석을 수행하였다. 시험 결과 침식연소가 이루어짐을 확인하였으며, 이를 바탕으로 알루미늄 입자의 포함 여부, 특성 길이에 따른 침식연소 상수의 연관성, 추진제 초기 온도 영향성 등을 고려하여 침식연소 모델과 영향인자에 대해 분석하였다. 확보한 침식연소 모델을 적용하여 유동-구조 연성 해석을 수행하였으며, 시험 결과와 유사함을 확인하였다.

스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석 (Fluid/Structure Coupled Analysis of 3D Turbine Blade Considering Stator-rotor Interaction)

  • 김유성;김동현;김요한;박웅
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.764-772
    • /
    • 2009
  • In this study, fluid/structure coupled analyses have been conducted for 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras(S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction(FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석 (Fluid/structure Coupled Analysis of 3D Turbine Blade Considering Stator-Rotor Interaction)

  • 김유성;김동현;김요한;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.563-569
    • /
    • 2008
  • In this study, fluid/structure coupled analyses have been conducted f3r 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction (FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

  • PDF

Self-similarity in the equation of motion of a ship

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.333-346
    • /
    • 2014
  • If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

2차원 유체- 구조물-지반 상호작용해석 전산프로그램 (A Computer Program for 2-D Fluid-Structure-Soil Interaction Analysis)

  • 김재민
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.427-434
    • /
    • 2000
  • This paper presents a computer program for a 2-D fluid-structure-soil interaction analysis. With this computer program the fluid can be modeled by a spurious free 4-node displacement-based fluid element which uses rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and near field soil are discretized by the standard finite elements while the unbounded far field soil are discretized by the standard finite elements while the unbounded far field soil is represented by the frequency dependent dynamic infinite elements. Sine this method models directly the fluid-structure-soil system it can be applied to the dynamci analysis of 2-D liquid storage structure with complex geometry. For the purpose of verification dynamic analyses for tanks on a rigid foundation and on compliant embankment are carried out. Comparison of the present results with those by ANSYS program shows good agreement.

  • PDF

2차원 유체-구조뭍-지반계의 지진응답해석 (Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems)

  • 윤정방;장수혁;김재민;홍선기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.289-296
    • /
    • 2000
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

2차원 유체-구조물-지반계의 지진응답해석 (Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems)

  • 윤정방;장수혁;김재민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF