• 제목/요약/키워드: Fluid-Structure Coupled Analysis

검색결과 181건 처리시간 0.022초

Developing a new weir type using the smoothed particle hydrodynamic model

  • Kalajdzisalihovic, Haris;Milasinovic, Zoran;Harapin, Alen
    • Coupled systems mechanics
    • /
    • 제10권6호
    • /
    • pp.491-507
    • /
    • 2021
  • The aim of this paper is to conduct a hydrodynamic analysis of fluid flow over different weir types using the analytical solution, the physical model taken from another article, and numericalsimulations through the Smoothed particle hydrodynamic method (SPH) using the compiled DualSPHysics source code. The paper covers the field of real fluid dynamics that includes a description of different proposed types of weirs in various flow regimes and the optimal solution for the most efficiency structure shape. A detailed presentation of the method, the structure and it's characteristics are included. Apart from the single stepped weir, two other weir types are proposed: a Divided type and a Downstream slopped type. All of them are modeled using the SPH method.

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • 대한조선학회지
    • /
    • 제24권4호
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

발전소용 Y형 체크밸브에 관한 수치해석 연구 (Numerical Analysis of Y-shaped Check Valve for Power Plant)

  • 이재훈;김시범;전락원;이근호
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.129-135
    • /
    • 2016
  • Various type of valves are manufactured for different industrial uses. Among them, check valves are used to allow fluid to flow in one direction but not in the opposite direction. There are many different types of check valves, but Y-shaped check valves are widely used these days. Not many studies have been carried out on Y-shaped check valves and the flow coefficients obtained through numerical analysis have the problem of low reliability. In order to solve this problem, this study performed flow analysis, flow-structure coupled analysis, and flow coefficient measurement experimentally, and through these analyses derived and verified the flow coefficients and assessed the structural safety based on numerical analysis.

받음각 효과를 고려한 발사체 날개단면의 초음속극초음속 비선형 유체유발진동해석 (Nonlinear Flow-Induced Vibration Analysis of Typical Section in Supersonic and Hypersonic Flows with Angle-of-Attack Effect)

  • 김동현;김유성;윤명훈
    • 한국군사과학기술학회지
    • /
    • 제10권4호
    • /
    • pp.12-19
    • /
    • 2007
  • In this study, nonlinear flow-induced vibration(flutter) analyses of a 2-DOF launch vehicle airfoil have been conducted in supersonic and hypersonic flow regimes. Advanced aeroelastic analysis system based on computational fluid dynamics and computational structural dynamics is successfully developed and applied to the present analyses. Nonlinear unsteady aerodynamic analyses considering strong shock wave motions are conducted using inviscid Euler equations. Aeroelastic governing equations for the 2-DOF airfoil system is solved by the coupled integration method with interactive CFD and CSD computation procedures. Typical wedge type airfoil shapes with initial angle-of-attacks are considered to investigate the nonlinear flutter characteristics in supersonic(15). Also, the comparison of detailed aeroelastic responses are practically presented as numerical results.

Optimal layout of a partially treated laminated composite magnetorheological fluid sandwich plate

  • Manoharan, R.;Vasudevan, R.;Jeevanantham, A.K.
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1023-1047
    • /
    • 2015
  • In this study, the optimal location of the MR fluid segments in a partially treated laminated composite sandwich plate has been identified to maximize the natural frequencies and the loss factors. The finite element formulation is used to derive the governing differential equations of motion for a partially treated laminated composite sandwich plate embedded with MR fluid and rubber material as the core layer and laminated composite plate as the face layers. An optimization problem is formulated and solved by combining finite element analysis (FEA) and genetic algorithm (GA) to obtain the optimal locations to yield maximum natural frequency and loss factor corresponding to first five modes of flexural vibration of the sandwich plate with various combinations of weighting factors under various boundary conditions. The proposed methodology is validated by comparing the natural frequencies evaluated at optimal locations of MR fluid pockets identified through GA coupled with FEA and the experimental measurements. The converged results suggest that the optimal location of MR fluid pockets is strongly influenced not only by the boundary conditions and modes of vibrations but also by the objectives of maximization of natural frequency and loss factors either individually or combined. The optimal layout could be useful to apply the MR fluid pockets at critical components of large structure to realize more efficient and compact vibration control mechanism with variable damping.

유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석 (Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction)

  • 이진호;이상봉;김재관
    • 한국지진공학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-12
    • /
    • 2012
  • 이 논문에서는 유체-구조물-지반의 상호작용을 고려한 해상풍력발전기의 지진응답해석법을 제시하였다. 풍력발전기는 tower와 그 정점에 집중된 질량으로 모델링 되었다. 이 tower는 유연한 해저지반에 기초하고 있는 튜브형 cantilever로 이상화하였다. Tower와 해수 간의 동적 상호작용, 기초와 지반간의 동적 상호작용이 고려된 유체-구조물-지반 연성계의 지배방정식은 부분구조법과 Rayleigh-Ritz방법에 의해서 유도되었다. 해수는 압축성 비점성 이상 유체로 이상화하였다. 해수로 포화된 층상지반에 놓인 footing의 동적 강성은 Thin Layer법에 의해서 계산하여 상부구조물 모델과 결합시켰다. 이 해석법을 해상풍력발전기 모델의 지진응답해석에 적용하였다. 해석 결과를 준거해와 비교해서 제안한 해석법의 타당성을 검증하였다. Tower의 유연성, 지반의 강성이 해상풍력발전기 지진거동에 미치는 영향을 분석하였다. 유체-구조물 상호작용과 지반-구조물 상호작용의 지진응답에 대한 상대적인 중요도를 비교 평가하였다.

비점성 저차모델링 기법을 활용한 비선형 플러터 해석 (NONLINEAR FLUTTER ANALYSIS USING INVISCID REDUCED ORDER MODELING TECHNIQUE)

  • 김요한;김동현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.458-464
    • /
    • 2011
  • A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

  • PDF

3차원 경계요소법과 전선 유한요소 해석의 연성을 통한 전선 유탄성 해석 (Analysis on the Hydroelasticity of Whole Ship Structure by Coupling Three-dimensional BEM and FEM)

  • 김경환;방제성;김용환;김승조
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.312-326
    • /
    • 2012
  • This paper considers a fully coupled 3D BEM-FEM analysis for the ship structural hydroelasticity problem in waves. Fluid flows and structural responses are analyzed by using a 3D Rankine panel method and a 3D finite element method, respectively. The two methods are fully coupled in the time domain using a fixed-point iteration scheme, and a relaxation scheme is applied for improve convergence. In order to validate the developed method, numerical tests are carried out for a barge model. The computed natural frequency, motion responses, and time histories of stress are compared with the results of the beam-based hydroelasticity program, WISH-FLEX, which was thoroughly validated in previous studies. This study extends to a real-ship application, particularly the springing analysis for a 6500 TEU containership. Based on this study, it is found that the present method provides reliable solutions to the ship hydroelasticity problems.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

고체전달음 저감을 위한 음향전달 특성해석에 관한 연구 (The Study on the Analysis of the Acoustic Transfer Function for Reducing the Structure-borne Noise)

  • 김경모
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes the acoustic analysis of mid duty truck. The focus of the analysis is on structure borne engine noise with major contributions of 2nd order. It has been previously recognized that the noise contribution of each transfer path of structure borne noise can be varied with the charateristics of each mounts and vibro acoustic sensitivity of car body. The structure of car body will be split up into three major sub components, which are modeled separately, the engine, the frame and the cab. The acoustic performance is evaluated on three levels: engine to frame transfer, frame to cab transfer, and panel contribution from cab to driver. In order to perform these analyses, analytical models are created for the engine, frame, cab and acoustic cavity. The models are linked through a coupled fluid structure calculation, and through FRF Based Substructuring for the structural couplings. Based on the structural coupling calculations, a transfer path analysis is performed to identify the most important transfer paths. These paths are then the focussing points for applying modifications to the structure or the mount system. Finally, a number of modification are proposed and their effect is quantified.

  • PDF