• Title/Summary/Keyword: Fluid pressure

Search Result 4,326, Processing Time 0.036 seconds

Local blood flow in acute respiratory and metabolic acid-base distrubances in dog (급성산-염기 균형장해때의 국소 혈류량 변화)

  • Kim, Sam-Hyeon;Lee, Yeong-Gyun;Kim, U-Gyeom
    • Journal of Chest Surgery
    • /
    • v.17 no.1
    • /
    • pp.101-109
    • /
    • 1984
  • The influences of acute respiratory and metabolic acid-base disturbances on the carotid, renal and coronary blood flow were measured in dogs. Respiratory acidosis was induced by artificial respiration with 8% CO2 -02 gas mixture and respiratory alkalosis was induced by hyperventilation under the control of respirator. Metabolic acidosis and metabolic alkalosis were induced by intravenous infusion of 0.3N hydrochloric acid and 0.6M sodium bicarbonate solution. To observe the effect of hyperkalemia, isotonic potassium chloride solution was infused. CVI electromagnetic flowmeter probes were placed on the left common carotid artery, left renal artery and left circumflex coronary artery. Each flow was recorded on polygraph. 1. The carotid blood flow showed rapid showed rapid and marked increase in acute respiratory acidosis. Even in the cases when arterial blood pressure was lowered during the state of respiratory acidosis, carotid blood flow increased. By the infusion of hydrochloric acid, carotid blood flow increased slowly and returned to the previous label after discontinuation of the infusion. Carotid blood flow also increased by the infusion of large amount of sodium bicarbonate, but it might be the combined effect of expansion of extracellular fluid and compensatory elevation of carbon dioxide tension. 2.The renal blood flow remained unchanged during the acute acid-base disturbances, suggesting effective autoregulation. Renal blood flow, however, increased very slowly when the infusion of potassium chloride continued for a long period. 3.Although less marked than the carotid blood flow, the coronary blood flow increased in the acute respiratory and metabolic acidosis. In asphyxiated condition, coronary blood flow increased most markedly and this might be the combined effect of hypoxia, hypercapnea, and lowering of pH. In summary, the carotid blowflow showed more marked change in the acute respiratory and metabolic acidosis than the renal and coronary blood flow. Respiratory and metabolic components of acid-base disturbances may influence the local blood flow concomitantly, there being more differences in the individual responses, but respiratory component manifested more rapid and marked effect than metabolic component.

  • PDF

Wave Forces Acting on a Cylindrical Aquaculture Fish Cage (원통형 양식시설물에 작용하는 파랑하중)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this paper, the wave forces on a cylindrical aquaculture fish cage, which consists of the porous mesh with the uniform porosity, are analyzed using matched eigenfunction expansion method. The boundary condition on the porous net is derived based on the Darcy's law, which implies that the velocity of the fluid passing through the net is linearly proportional to the pressure difference between two sides of the net. The wave forces and wave responses are investigated by changing the porous parameter of porous net as well as the submerged position (floating type, bottom-mounted type) of an aquaculture fish cage. It is found that the wave forces on a bottom-mounted type are largely decreased compared with that on a floating type. Also, the porosity of the netting structure plays an important role in reducing the wave forces and the wave elevation in the vicinity of an aquaculture fish cage.

Numerical Analysis of Combustion and Heat Transfer of Domestic Gas Boiler Equipped with 2-stage Heat Exchanger (수치해법을 이용한 2단 열교환기 장착 가정용 보일러 연소실의 연소 및 열전달 특성 해석)

  • Kang, Seung-Kyu;Choi, Kyoung-Suhk;Kwon, Jeong-Rack
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.1-6
    • /
    • 2010
  • In this work, a numerical investigation is performed for the combustion chamber of domestic gas boiler with 1-stage and 2-stage heat exchangers. The fluid flow and heat transfer performance is simulated with a structure change of heat exchanger. The numerical solution shows that the heat transfer of the 2-stage heat exchanger is about 24% higher than that of the 1-stage heat exchanger, while the pressure loss of the 2-stage heat exchanger increases. The temperature of combustion chamber with 2-stage heat exchanger is lower than that of 1-stage. This effect reduces thermal NOx with decrease of high temperature staying time of the combustion gas.

Design of Multi-Phase Shift Controller for Valveless PZT Pump (밸브리스 압전펌프 연동구동 제어기 설계)

  • 조정대;박경민;노종호;함영복;유진산
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1282-1285
    • /
    • 2004
  • The high voltage driving system with multi-phase shifter including piezoelectric actuators comprised a driving power unit for outputting the driving power by converting input alternate current into direct current, a frequency shifting unit for supplying the direct current power and shifting or generating a frequency, a high-voltage amplification unit for amplifying the input signal outputted from the driving power unit and the frequency shifting unit into a high-voltage signal, and a phase shifting unit for shifting the phase difference of the amplified signal applied to the high-voltage amplification unit and driving plural piezoelectric actuators sequentially. The results that the operating voltage was stable, the voltage loss ratio was low and the response velocity was fast could be obtained. An experiment on performance of the high voltage driving system with multi-phase shifter designed and manufactured as above described was conducted by using a piezoelectric pump having 3 sheets of round unimorph piezoelectric actuators laminated respectively in a rectangular case. It sucks any fluid by causing the first piezoelectric actuator to shift from the inlet porter side, the phase delay of 60$^{\circ}$ causes the second piezoelectric actuator to begin to shift, and the phase delay of 120$^{\circ}$ causes the third piezoelectric actuator to begin to shift. As a result of measuring each change in the outlet flow rate of the piezoelectric pump, it was shown that the frequency-flow rate characteristic, the voltage-flow characteristic, and the load pressure-flow rate characteristic were improved.

  • PDF

Finite Element Analysis on the Deformation Behavior Stability of Contact Sealing Rings (접촉식 밀봉 링의 변형거동 안정성에 관한 유한요소해석)

  • Kim, Chung Kyun;Kim, Do Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.47-51
    • /
    • 2012
  • In this study, the deformation behavior stability of sealing rings with three different cross sectional areas has been presented using a FEM technique. To investigate the deformation behavior stability, the initial compression rate of 25% has been applied to the sealing ring, which is molded with a nitrile butadiene rubber. The maximum strain, maximum stress, and maximum contact normal stress have been analyzed for the working fluid pressure of $25kgf/cm^2$. The FEM results show that the maximum strain of a hollow o-ring and a hollow rectangular ring with a hollow space in the center of a sealing ring is higher than that of a conventional o-ring, but the maximum stress and the maximum contact normal stress are low. In these results, the sealing rings with a hollow space in the center of the cross sectional area is recommended to increase an extended endurance stability of sealing rings. But, the solid sealing ring is designed to guarantee the sealing safety of a contact sealing ring.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet (혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화)

  • Song, Juyeon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.711-716
    • /
    • 2020
  • Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.

AN OPTIMUM DESIGN STUDY OF INTERLACING NOZZLE BY ANALYZING FLUID FLOW INSIDE INTERLACING NOZZLES

  • Juraeva Makhsuda;Ryu Kyung Jin;Kim Sang Dug;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.93-97
    • /
    • 2005
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. This study investigates the effect of interlacing nozzle geometry on the interlacing process. The geometries of interlacing nozzles with multiple air inlets located across the width of a yarn channels are investigated. The basic interlacing nozzle is the yarn channel, with a perpendicular single air inlet in the middle. The yarn channel shapes are cross sections with semicircular or rectangular shapes. This paper presents three doubled sub air inlets with main air inlet and one of them is slightly inclined doubled sub air inlets with main air inlet. The compressed air coming out from the inlet hits the opposing wall of the yarn channel, divides into two branches, flows trough the top side of yarn channel, joins with the compressed air coming out from the sub air inlet and then creates two free jets at both ends of the yarn channel. The compressed air moves in the shape of two opposing directional vortices. The CFD-FASTRAN was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this paper.

  • PDF

A study on particle collection efficiency of a low power consumption two-stage electrostatic precipitator for oil mists collection (오일 미스트 포집을 위한 저전력 소비형 2단 전기집진기의 집진효율에 대한 연구)

  • Song, Chi-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.834-843
    • /
    • 2014
  • A two-stage electrostatic precipitator (ESP) using a carbon brush charger and a plate-plate parallel aluminum collector was developed and its application for removal of oil mist aerosols was investigated. Charge number per particle and particle collection efficiency at different applied voltage to the carbon brush charger were measured and compared to those obtained by theoretical calculations. A long-term operation of the ESP during 9 weeks was also performed to evaluate its performance durability for oil mists. Average charge number per mist particle increased with the applied voltage to the charger, and thus the collection efficiency of the mist particles also increased overall at the particle size range of 0.26 - 3 mm. The tendencies of the average charge number per particle and particle collection efficiency obtained from theoretical calculations were considerably consistent with those of the experimental results. Particle collection efficiency of ~99 % at 0.3 mm could be achieved by power consumption of only 0.0033 W/($m^3/h$) at the face velocity of 1 m/s and its collection performance maintained stably during every 8 hr operation per day for 9 weeks with little increase of pressure drop.

Study on Structural Analysis and Manufacturing of Polyethylene Canoes (폴리에틸렌 카누의 구조해석과 제조에 관한 연구)

  • Park, Chan-Kyun;Kim, Min-Gun;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.309-316
    • /
    • 2011
  • Canoes are usually made from wood or FRP. However, today environment-friendly materials are preferred, and hulls made of FRP are prohibited in some countries. Polyethylene can be recycled and so is suitable for synthetic canoe construction. We used 3D Boat-Design to determine the hydrostatic properties of the canoe. Flow-structure coupled analysis was performed using ANSYS Workbench R12.1. The hull pressure and passenger weight were considered as canoe loading factors. The key parameters for the canoe are the design variables. The constraints are as follows: (1) The maximum stress must not exceed 50% of the polyethylene yield stress; and (2) the canoe weight must not exceed 50 kg. The optimal structural conditions were obtained by the response optimization process. The components of the canoe hull were manufactured from polyethylene pipes and joined by thermal fusion methods. Tests showed that the polyethylene canoe had better performance than existing canoes.