• Title/Summary/Keyword: Fluid power system

Search Result 1,269, Processing Time 0.03 seconds

Power Transmission Mechanism of Electrorheological Clutch Part I: Analytical development of power transmission mechanism (전기유변성 클러치의 동력전달 메커니즘 제1보: 동력전달 메커니즘의 해석적 전개)

  • 이규한;심현해;김창호;임윤철
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.27-38
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a power transmission system controlled with electric field strength. This device responses very rapidly when controlled by rapid and continuous electrical signal and can form a servosystem. Wear, noise and vibration during operation is very low level. This study was undertaken to investigate substitutive possibilities of this ER clutch for existing power transmission mechanism. An analytic relationships using rheological model (so called, 'Bingham plastic model') of ER fluid were developed, and operation constraints and optimum design concepts were constructed. With this relationships, typical responses of ER clutch and effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described. In conclusion, compared with existing mechanisms, an excellent performance of ER clutch was confirmed.confirmed.

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

Numerical Study of Unsteady Mixed Convection in a Cavity with High Viscous Fluid (캐비티 내 고 점성유체의 비정상 흔합대류에 관한 수치해석적 연구)

  • Bae, D.S.;Cai, Long Ji
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.11-17
    • /
    • 2009
  • A numerical study of unsteady mixed convection in a cavity with high viscous fluid is presented. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Rayleigh number ($10^3\;{\leq}\;Ra\;{\leq}\;10^5$), the Reynolds number (0 < Re $\leq$ 1), and the aspect ratio (0.5 $\leq$ AR $\leq$ 2). The fluid used is silicon oil, a high prandtl number fluid, Pr = 909.1. The results show velocity vectors and temperature distributions. It is found that the periodic flows in a cavity are observed at very low Reynolds numbers, and the period of periodic flow decreases with increasing Reynolds and Rayleigh numbers, and increases with increasing aspect ratio. Also, the Reynolds number range of periodic flow increases with increasing Rayleigh numbers and aspect ratio.

  • PDF

A Study on Vibration Characteristics in Water Tank with Multi-panels (복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.

A Study on the Control Characteristics of FHA by Using ERF and Industrial Controller (ERF와 산업용 콘트롤러를 이용한 FHA의 제어특성에 관한 연구)

  • Jang Sung-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • Making the best use of the features of the electro-rheological(ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. In addition, the performance of the plate type ER-Valve is investigated by change the particle concentration of the ER fluid. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power control system. Using the minかnぉd pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system fir the ER Valve which occurs from industrial controller(PLC).

Experimental Study of Shoe Cushioning System of Shock Absorption Using Fluid Damper with Nano Particles (나노입자 유체댐퍼를 이용한 보행 충격 완화 장치의 충격 흡수에 대한 실험적 연구)

  • Moon B.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.14-20
    • /
    • 2005
  • This study developed and evaluated a shoe cushioning system to reduce impact force patterns during running. The shoe cushioning system is composed with a poly urethane pocket, which contains water and porous grains to absorb the force against the weight inside the pocket. Load-displacement curves for the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets that have air, water or grains. Mechanical testings showed that the pocket with 5 g particles was the best for the shoe cushioning system. This founding will be helpful to designing the shoe.

  • PDF

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

ORC System Performance Analysis upon R-245fa and Novec 649 (R-245fa 및 NOVEC 649 작동유체에 따른 ORC 시스템 성능 변화)

  • Chang, Hong-Soon;Han, Young-Sub;Song, Yeong-Kil;Kim, Sung-Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.17-23
    • /
    • 2016
  • A test unit for Organic Rankine Cycle (ORC) power generation system was developed and experimentally reviewed the performance of the ORC system. Two different organic fluids (R-245fa & Novec 649) were tested as working fluids for the system. System behavior was measured and analyzed along with the variables, such as temperature, pressure, rpm and shaft power. It is one of the findings that Novec 649 fluid is to be less pressurized than R-245fa in order to up to the heat source (boiler) capacity, that limits the experiment as high as 2 kW in shaft power.