• Title/Summary/Keyword: Fluid injection

Search Result 700, Processing Time 0.032 seconds

다중으로 분할된 자연수압파쇄 균열 모델링 (Modeling of Highly Segmented Fluid-Driven Natural Fractures)

  • 심영종
    • 한국지반환경공학회 논문집
    • /
    • 제10권6호
    • /
    • pp.135-141
    • /
    • 2009
  • 수압파쇄기술은 주로 지열, 석유, 가스 추출 시 지반의 투수성을 증가시키기 위해 사용되는 공법으로 자연에서 생성된 수압파쇄균열의 원리를 적용함으로써 실제 설계기법을 발전시켜 나아가고 있다. 본 논문에서는 균열간 거리가 아주 근접한 다중으로 분할 생성된 자연 수압파쇄균열을 대상으로 균열간 기계적 상호작용의 영향을 평가하였다. 균열의 수는 71개이며 여기에 사용된 균열폭 자료는 3,339개로 균열간 아주 근접하여 생성 당시 상당한 기계적 상호작용이 예상되었던 균열이다. 이러한 상호작용을 정량적으로 평가하기 위해서 경계병치법을 사용하였으며 측정된 균열폭에 가까운 형상을 얻기 위해 최소자승법을 통한 압력(net pressure)을 계산하였다. 그 결과 상호작용을 고려한 경우 단 2개의 압력변수만으로도 측정치에 가까운 균열폭을 얻을 수 있음을 증명하였다.

  • PDF

A Study of High Viscosity Melt Front Advancement at the Filling Process of Injection-Compression Mold

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.333-334
    • /
    • 2002
  • Injection-compression molding parts are many cases with complicated boundary condition which is difficult to analysis of mold characteristics precisely. In this study, the effects of various process parameters such as multi-point gate location, initial charge volume, injection time and pressure have been investigated using finite element method to fomulate the melt front advancement during the mold filling process. A general governing equation for tracking the filling process during injection-compression molding is applied to volume of fluid method. To verify the results of present analysis, they are compared with those of the other paper. The results show a strong effect of processing conditions as a result of variations in the three-dimensional complex geometry model.

  • PDF

유동해석을 통한 물 분사용 비데 노즐 설계 (DESIGN OF WATER INJECTION NOZZLE OF BIDET WITH COMPUTATIONAL FLUID DYNAMICS)

  • 최윤석;양승용;진성월
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.8-12
    • /
    • 2007
  • An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.

유동해석을 통한 물 분사용 비데 노즐 설계 (DESIGN OF WATER INJECTION NOZZLE OF BIDET WITH COMPUTATIONAL FLUID DYNAMICS)

  • 최윤석;양승용;진성월
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.68-71
    • /
    • 2007
  • An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.

  • PDF

커먼레일 인젝터로부터 분사되는 디젤 분무의 연소실 압축비 변화에 따른 SMD 분포의 CFD 시뮬레이션 (CFD Simulation of SMD Distribution of Diesel Sprays Injected from a Common Rail Injector According to Compression Ratio of Combustion Chamber)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제19권3호
    • /
    • pp.123-129
    • /
    • 2014
  • A diesel spray overall SMD (Sauter mean diameter) in a spray chamber was simulated with CFD by varying the compression ratio in the spray chamber from 18:1 to 100:1. The gas densities of the spray chambers for the compression ratios of 18:1 and 100:1 were 17.97 and $74.8kg/m^3$, respectively. Standard KIVA-3V code was used for the CFD simulation. Various fuel injection patterns such as single injection, pilot injection and split injection were used for the CFD simulation. Fuel injection pressures for the simulated diesel sprays are 90 and 120 MPa. As the compression ratio increases, the CFD simulated SMD was decreased, which was generally in agreement with previous experimental studies.

AC서보모터-볼스크루 구동 사출장치의 힘 동기제어 (Force Synchronizing Control for AC Servomotor-Ball Screw Driven Injection Unit)

  • 조승호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.14-20
    • /
    • 2015
  • This paper focuses on the issue of force synchronizing control for the injection servomechanism of injection molding machines. Prior to the controller design, a virtual design model was developed for the injection mechanism with an AC servomotor-ball screw. A synchronizing controller is designed and combined with the PID control to accommodate the mismatches between the real plant and the linear model plant used. Due to the plant uncertainty, the stiffness and the damping of the mechanism were considered. From the tracking control simulations based on the virtual design model, it is shown that a significant reduction in force synchronizing error is achieved through the use of a proposed control scheme.

사출성형 실린더의 적응제어 방식 속도 및 압력제 (Adaptive Control Based Velocity and Pressure Control for Injection Molding Cylinder)

  • 조승호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권3호
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with the issue of model reference adaptive control strategy to control the injection molding machine. Prior to controller design, a pair of transfer functions are derived for the injection and dwelling process based on mathematical models of components. As external disturbances to examine the robustness of the proposed controller, nozzle clogging and contraction of molded objects are considered and realized by proportional valve. The overall simulation system, consisting of hydraulic components, controller and sensors, is implemented using the components of commercial software SimulationX. The simulation results confirm the proposed scheme's efficiency and robustness.

치과용 스케일러 금형의 분말사출성형 CAE 해석설계 (CAE Analysis of Powder Injection Molding Process for Dental Scaler Mold)

  • 고영배;박형필;정성택;이병옥;황철진
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.570-576
    • /
    • 2005
  • Powder Injection Molding(PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry With this regards, design technology of dental scaler tip PIM mold, which has complex shape and small core pin (diameter=0.6mm), with the help of computer-aided analysis of powder injection molding process was developed. Computer-aided analysis for dental scaler tip mold was implemented by finite element method with non-Newtonian fluid, modified Cross model viscosity, PvT data of powder/binder mixture. Compter-aided analysis results, such as filling pattern, weldline formation, air vent position prediction were compared with experimental result, and eventually have been shown good agreement. The core pin (diameter=0.6mm) deflection analysis of dental scaler tip PIM mold during PIM filling process was also investigated before mold fabrication.

MR Fluid Jet Polishing 시스템에 의한 Fused Silica Glass 연마특성 고찰 (Investigation of Polishing Characteristics of Fused Silica Glass Using MR Fluid Jet Polishing)

  • 이정원;조용규;조명우
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.761-766
    • /
    • 2012
  • Abrasive fluid jet polishing processes have been used for the polishing of optical surfaces with complex shapes. However, unstable and unpredictable polishing spots can be generated due to the fundamental property of an abrasive fluid jet that it begins to lose its coherence as the jet exits a nozzle. To solve such problems, MR fluid jet polishing has been suggested using a mixture of abrasives and MR fluid whose flow properties can be readily changed according to imposed magnetic field intensity. The MR fluid jet can be stabilized by imposed magnetic fields, thus it can remain collimated and coherent before it impinges upon the workpiece surface. In this study, MR fluid jet polishing characteristics of fused silica glass were investigated according to injection time and magnetic field intensity variations. Material removal rates and 3D profiles of the generated polishing spots were investigated. From the results, it can be confirmed that the developed MR fluid polishing system can be applied for stable and predictable precise polishing of optical parts.

자동 IV 주사 유량 자동 제어 및 네트워크 모니터링 (Automatic Flow Control and Network Monitoring of IV Injection)

  • 김진남;권원태;이강희
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.161-166
    • /
    • 2012
  • Intravenous (IV) injection is widely used to supply Ringer solution directly into a vein in hospital. Generally, a passive injection method has been used, which causes the inconsistent flow rate of fluid and inappropriate control of injection time by a patient. It leads to an unnecessary nurse's overwork and decrement of IV injection's effect. To solve these problems, flow control infusion pumps have been developed. But because of relatively heavy weight and high price, its usage has been limited. In the present study, a new automatic IV injection system is developed. It is installed with a small pressing mechanism driven by a small electric motor to regulate the flow rate by pressing tube. Proportional integral derivative (PID) feedback control algorithm is applied to control the electric motor. The system is smaller in size and uses lower power than the existing commercial product. The newly developed system is also installed with networking capability, which enables monitoring the status of several automatic IV injection system at the same time.