• Title/Summary/Keyword: Fluid flow generation system

Search Result 134, Processing Time 0.021 seconds

Development of a Small Centrifugal Fan with CFD (수치해석에 의한 소형 원심팬 개발)

  • Chee, Seon-Koo;Park, Sung-Kwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.11-16
    • /
    • 2001
  • It is not easy to apply a small-sized centrifugal fan to the duct used for the thermal management of home electronic appliances due to complex design parameters of its blades and scroll. The main objective of this study was to develop the systematic process to design an optimal centrifugal fan based on the 3-dimensional configuration of blades obtained from the conceptual design program self-developed with the given design constraints such as the flow rate, the total pressure loss, the size of fan, and the number of rotation. The design process to find an optimal centrifugal fan for refrigerator was technologically linked in many ways. The complex grid generation system of the fan model included scroll was adopted for the numerical simulation. The FVM CFD code, FLUENT, was used to investigate the three dimensional flow pattern at the coordinate system of rotating frame and to check the optimal performance of the fan. By using this design process, a selected centrifugal fan was designed, numerically simulated, manufactured and experimentally tested in the wind tunnel. The performance curve of fan manufactured by NC process was compared with numerically obtained characteristic curve. The developed design method was proved into being excellent because these two curves were well matched.

  • PDF

Development of an Air Supply System in 250 kW MCFC Fuel Cell System (250kW급 MCFC 연료전지 시스템용 공기공급장치 개발)

  • Park, Jung-Young;Hwang, Soon-Chan;Park, Moo-Ryong;Kim, Young-Chul;Ahn, Kook-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.

Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC) (유기 플래쉬 사이클(OFC)의 열역학적 성능 특성)

  • Kim, Kyounghoon;Jung, Youngguan;Park, Sanghee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.91-97
    • /
    • 2013
  • Recently a novel cycle named organic flash cycle (OFC) has been proposed which has improved potential for power generation from low-temperature heat sources. This study carries out thermodynamic performance analysis of OFC using various working fluids for recovery of low-grade heat sources in the form of sensible energy. Special attention is focused on the optimum flash temperature at which the exergy efficiency has the maximum value. Under the optimal conditions with respect to the flash temperature, the thermodynamic performances of important system variables including mass flow ratio, separation ratio, heat addition, specific volume flow rate at turbine exit, and exergy efficiency are thoroughly investigated. Results show that the exergy efficiency has a peak value with respect to the flash temperature and the optimum working fluid which shows the best exergy efficiency varies with the operating conditions.

A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor (차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구)

  • Jung, S.D.;Kim, C.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

Conceptual design of cryomodules for RAON

  • Kim, Y.;Lee, M.K.;Kim, W.K.;Jang, H.M.;Choi, C.J.;Jo, Y.W.;Kim, H.J.;Jeon, D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2014
  • The heavy ion accelerator that will be built in Daejeon, Korea utilizes superconducting cavities operating in 2 K. The cavities are QWR (quarter wave resonator), HWR (half wave resonator), SSR1 (sing spoke resonator1) and SSR2. The main role of the cryomodule is supplying thermal insulation for cryogenic operation of the cavities and maintaining cavities' alignment. Thermal and structural consideration such as thermal load by heat leak and heat generation, cryogenic fluid management, thermal contraction, and so on. This paper describes detailed design considerations and current results have being done including thermal load estimation, cryogenic flow piping, pressure relief system, and so on.

An Investigation on Flow and Structural Characteristics of Heat Exchanger in Rankine Steam Cycle for Co-generation System (기관 폐열 회수를 위한 열교환기의 Baffle 길이 변경에 따른 성능 예측에 관한 수치 해석적 연구)

  • Ryu, Kyuhyenn;Kim, Kusung;Lee, Younghum;Kang, Seokho;Park, Gibeom
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.32-39
    • /
    • 2013
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop is used to recover waste heat from exhaust gas and a low temperature loop is used to recover waste heat from cold engine coolant. This paper has dealt with a layout of low temperature loop system, the review of the velocity contours through numerical analysis. According to the result of analysis, the designed heat exchanger. And comparing with flow analysis results, LT Boiler is safe to operation.

Optimal Design of a Plate-Fin Heat Sink with Slip Flow (경계면 슬립이 적용되는 Plate-Fin Heat Sink 의 최적형상 설계)

  • Park, Boo Seong;Park, Hyun Jin;Kim, Bo Hung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.219-227
    • /
    • 2015
  • A dehumidifier using a thermoelement has many advantages compare to a dehumidifier using compressor systems. However, it is crucial to optimize the performance of heat sink for improving heat dissipation problem on the heat generation part. In this study, we utilized computational fluid dynamics software to compare Nusselt number, temperature and system efficiency based on fin thickness, flow gap between fin and fin length. Moreover, slip flow on the boundary layer was applied for the further analysis. Our objective in this study is to suggest an optimal fin shape to improve heat transfer with the tendency of performance factor depending on change of the shapes. Our results on the optimization of fin shape and analysis of slip flow will be utilized to enhance the heat transfer in the heat sink which is important in the design of dehumidifier using a thermoelement.

A Study on Models for the Analysis of Pressure Pulsation in a Swash-Plate Type Axial Piston Pump (사판식 액셜 피스톤 펌프에서의 압력맥동 해석모형에 관한 연구)

  • Shin, Jung-Hun;Kim, Hyoung-Eui;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.314-320
    • /
    • 2011
  • Although swash-plate type axial piston pumps have the merits of wide operating conditions and high efficiency, the characteristics of pressure pulsation and flow ripple which result in system noise generation are on-going problems. This research examined the analytic models of the dynamic oil pressure and flow characteristics in the pump. A new mathematical model which considered the pressure behaviors of each cylinder and discharge piping was developed to analyze the pump pressure and flow. This model also considered the leakages in the clearances which many researchers have ignored so far. Using the developed model, numerical calculations were implemented. The results showed that widely used simple model which considered only a single cylinder can not predict actual discrete flow dynamics and that fluid inertia effect has to be considered in the mathematical model. Several critical parameters were discussed such as port volume and discharge resistance on the assumption that the pipe length is not so long. The effect of leakages was studied on the final stage.