• 제목/요약/키워드: Fluid and Rigid body

검색결과 68건 처리시간 0.026초

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

실시간 헬리콥터 시뮬레이션을 위한 회전 깃의 역학적 모델 (A Dynamics Model of Rotor Blades for Real-time Simulation of Helicopters)

  • 박수완;유관우;김은주;백낙훈
    • 정보처리학회논문지A
    • /
    • 제14A권5호
    • /
    • pp.255-262
    • /
    • 2007
  • 물리 기반의 헬리콥터 시뮬레이션은 항공학, 항공역학 등의 분야에서 많이 연구되어 오고 있으나, 복잡한 수식, 많은 계산량 등으로 인해 사실성과 속도를 동시에 추구하는 컴퓨터 그래픽스 분야에는 적용하기 어려웠다. 본 논문에서는 컴퓨터 그래픽스 분야에 적용할 수 있도록 구현하기 쉽고, 실시간 헬리콥터 시뮬레이션을 가능하게 하는 헬리콥터 회전 깃(rotor blades)의 역학적 모델을 제안한다. 헬리콥터는 회전 깃과 공기의 충돌로 발생한 힘을 통해 운동하는데, 이는 유체와 강체가 충돌해서 발생하는 충돌력으로 설명할 수 있다. 이를 근거로 근사화한 회전 깃의 역학적 모델을 도입하면, 기존의 강체 시뮬레이션 방법으로 유체와 강체가 충돌하는 헬리콥터의 움직임을 실시간 시뮬레이션 할 수 있다. 본 논문에서는 실시간 계산이 가능하도록 뉴턴의 양력 계산법을 응용하여 회전 깃의 움직임으로 발생하는 힘을 구한다. 본 논문이 제안하는 방법에 따라 구현된 프로토타입 시스템은 실제와 유사한 헬리콥터 시뮬레이션을 실시간에 처리할 수 있음을 보였다.

Comparative study on the resistance performance of an icebreaking cargo vessel according to the variation of waterline angles in pack ice conditions

  • Kim, Moon-Chan;Lee, Won-Joon;Shin, Yong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.876-893
    • /
    • 2014
  • The resistance performance of an icebreaking cargo vessel according to the variation of waterline angles is investigated numerically and experimentally. A recently developed Finite Element (FE) model is used in our analysis. A resistance test with synthetic ice is performed in the towing tank at Pusan National University (PNU) to compare and validate the computed results. We demonstrate good agreement between the experimental and numerical results. Shipice interaction loads are numerically calculated based on the Fluid Structure Interaction (FSI) method in the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the PNU towing tank are used to compare and validate the numerical simulations. For each waterline angle, numerical and experimental comparisons were made for three concentrations (90%, 80%, and 60%) of pack ice. Ice was modeled as a rigid body, but the ice density was the same as that used in the experiments. A comparative study according to the variation of stem angles is expected to be conducted in the near future.

Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Cho, Jin-Rae;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.1-20
    • /
    • 2013
  • In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

Aneurysmal bone cyst of the mandible managed by conservative surgical therapy with preoperative embolization

  • An, Seo-Young
    • Imaging Science in Dentistry
    • /
    • 제42권1호
    • /
    • pp.35-39
    • /
    • 2012
  • A 9-year-old girl visited our hospital, complaining of a rapid-growing and rigid swelling on the left posterior mandibular area. Panoramic radiograph showed a moderately defined multilocular honeycomb appearance involving the left mandibular body. CT scan revealed an expansile, multilocular osteolytic lesion and multiple fluid levels within cystic spaces. Bone scan demonstrated increased radiotracer uptake and angiography showed a highly vascularized lesion. The lesion was suspected as aneurysmal bone cyst (ABC) and preoperative embolization was performed, which minimize the extent of operation and the surgical complication. The lesion was treated by surgical curettage and lateral decortication with repositioning. No additional treatment such as a surgical reconstruction or bone graft was needed. Early diagnosis of ABC is very important and appropriate treatment should be performed considering several factors such as age, surgical complication, and possibility of recurrence.

부유식 가두리 양식장의 파랑중 유탄성 응답 해석 (A Hydroelastic Analysis of a Floating Fish Cage in Waves)

  • 최윤락;여환태
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.7-11
    • /
    • 2009
  • The dynamic responses and drift forces in waves of a floating circular fish cage are analyzed considering hydroelastic effects. The method of generalized mode is used to calculate the hydroelastic responses of the floater of cage. The elastic mode shapes, generalized mass, and stiffness in dry mode are evaluated by using a structural analysis code. The higher-order boundary element method is adopted to analyze the interaction between fluid and deformable structure. Some results of vertical motions and drift forces are shown and compared with those for a rigid body.

뿌연 효과와 디테일한 긁힘 표현을 이용한 균열된 얼음 표면 표현 (Representation of Cracked Ice Surfaces with Cloudy Effects and Detailed Scratches)

  • 김종현
    • 한국멀티미디어학회논문지
    • /
    • 제21권7호
    • /
    • pp.787-794
    • /
    • 2018
  • We propose a new framework which expresses the mist and scratches of cracked ice by an impact. We combine the grid projection technique, boundary particles method, and level-set method commonly used in fluid simulations to determine the region on the surface of an ice object which is affected by a collision. Mist is then generated in proportion to the impact, and immediately diffused, using a geodesic distance field to limit dissipation. The gradient of the mist is subsequently used to create realistic patterns of scratches and elongated air bubbles. Cracks of the ice object can also be considered, and the density of the mist made to vary realistically between fragments. As a result, our method not only represents high-quality ice effects, but also allows easy integration into existing rigid body simulation solvers.

Pontoon and Membrane Breakwater

  • 기성태
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.185-191
    • /
    • 2003
  • A numerical study on the hydrodynamic properties of a floating flexible breakwater consisting of triple vertical porous membrane structures attached to a floating rigid pontoon restrained by moorings is carried out in the context of two-dimensional linear wave-flexible body interaction theory. The tensions in the triple membranes are achieved by hanging a clump weight from its lower ends. The clump weight is also restrained properly by moorings. The dynamic behavior of the breakwater was described through an appropriate Green function, and the fluid multi-domains are incorporated into the boundary integral equation. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to wave action. It is found that the wave reflection and transmission properties of the structures depends strongly on the membrane length taking major fraction of water column, the magnitude of tensions on membrane achieving by the clump weight, proper mooring types and stiffness, the permeability on the membrane dissipating wave energy.

  • PDF

Free Surface Oscillation in Sloshing Problem Predicted with ALE Method

  • Ushijima Satoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.11-22
    • /
    • 1999
  • A numerical prediction method has been proposed to predict non-linear free surface oscillation in a three-dimensional container. The fluid motions are numerically predicted with Navier-Stokes equations discretized in a Lagrangian scheme with sufficient numerical accuracy. The profile of a free surface is precisely represented with three-dimensional body-fitted coordinates (BFC), which are regenerated in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to confirm the reliability of the computational method, it was firstly applied to three-dimensional flows within complicated-shaped rigid boundaries, such as curved pipes and ducts. Than it was applied to benchmark computations related to free surface oscillations. Following these basic verifications, non-linear sloshings in a cylindrical tank and transitions from sloshing to swirling motions were numerically predicted. Throughout these computations, the applicability of the present computational method has been confirmed and some of the predicted free surface motions were visualized as sequential images and animations to understand their dynamic futures.

  • PDF

회전방향 온도변화를 갖는 매우 빠르게 회전하는 파이프 내의 기체유동 (Gas Flow in a Rapidly Rotating Pipe with Azimuthal-Varying Thermal Wall Condition)

  • 박준상;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.628-633
    • /
    • 2003
  • An analysis on the steady-state has been made of flow of a compressible fluid rapidly-rotating in a pipe. The flow is induced by an small arbitrary azimuthally-varying thermal forcing added on the basic state of rigid body isothermal rotation. The system Ekman number is assumed to be very small value. Analytic solutions have been obtained for axisymmetric and non-axisymmetric types, in which the axisymmetric solution comes from the azimuthally-averaged wall boundary condition and the non-axisymmetric solution from fluctuating wall boundary condition.

  • PDF