• 제목/요약/키워드: Fluid Transport

검색결과 567건 처리시간 0.026초

NMR-based structural characterization of transthyretin in its aggregation-prone state

  • Kim, Bokyung;Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제24권3호
    • /
    • pp.91-95
    • /
    • 2020
  • Transthyretin (TTR) is an abundant protein in blood plasma and cerebrospinal fluid (CSF), working as a homo-tetrameric complex to transport thyroxine (T4) and a holo-retinol binding protein. TTR is well-known for its amyloidogenic property; several types of systemic amyloidosis diseases are caused by aggregation of either wild-type TTR or its variants, for which more than 100 mutations were reported to increase the amyloidogenicity of TTR. The rate-limiting step of TTR aggregation is the dissociation of a monomeric subunit from a tetrameric complex. A wide range of biochemical and biophysical techniques have been employed to elucidate the TTR aggregation processes, among which nuclear magnetic resonance (NMR) spectroscopy contributed much to characterize the structural and functional features of TTR during its aggregation processes. The present review focuses on discussing the recent advances of our understanding to the amyloidosis mechanism of TTR and to the structural features of its monomeric aggregation-prone state in solution. We expect that the present review provides novel insights to appreciate the molecular basis of TTR amyloidosis and to develop novel therapeutic strategies to treat diverse TTR-related diseases.

Velocity and temperature profiles of Al/water micro fluid in a circular tube with swirl

  • Chang, Tae-Hyun;Lee, Kwon Soo;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.677-684
    • /
    • 2013
  • A lot study of convection heat transfer on internal flow has been extensively conducted in the past decades using of high specific surface area, increasing heat transfer coefficient, swirling flow and improving the transport properties. This study concerned with the application of a tangential slot swirl generator for improving heat transfer in a horizontal circular copper tube. The Al particles(about $100{\sim}130{\mu}m$) was employed for this experimental work. 3D PIV(particle image velocimetry) technique has employed to measure velocity profiles of Al particles with and without swirl flow. The copper tube is heated uniformly by winding of a heating coil for heat transfer work, having a resistance of 9 ohm per meter. Experiments are performed in the Reynolds number range of 6,800~12,100 with swirl and without swirl using Al particles. Experimental data for comparison of Nusselt number is presented that of with swirl and without swirl along the test tube for the Reynolds numbers. The Nusselt number is improved with increasing of Reynolds numbers or swirl intensities along the test tube. The Nusselt number with swirl flow is about 60.0% to 119.0% higher than that obtained by the Dittus-Boelter equation.

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

A CFD Study of Near-field Odor Dispersion around a Cubic Building from Rooftop Emissions

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권3호
    • /
    • pp.153-164
    • /
    • 2017
  • Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.

Congenital Chloride Diarrhea 1례 (A Case of Congenital Chloride Diarrhea in Premature Infant)

  • 윤성관;김은영;문경래;박상기
    • Clinical and Experimental Pediatrics
    • /
    • 제46권3호
    • /
    • pp.308-311
    • /
    • 2003
  • 저자들은 복부 팽만과 체중감소를 주소로 내원한 신생아에서 복부 팽만이 심하여 기계적 장 폐색을 의심하여 시험적 개복술 시행하였으나, 폐색 소견 발견되지 않았고 이후 대변의 염소 이온 농도를 검사한 결과 CLD로 진단된 1례를 경험하였기에 문헌 고찰과 함께 보고하는 바이다.

유체법을 이용한 코로나 방전의 1차원 수치해석 (1-Dimensional Simulation of the Corona Discharge using Fluid Method)

  • 이용신;심재학;고광철;강형부
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.172-176
    • /
    • 1997
  • It is likely that the corona discharge appears due to the motion and the multiplication of electron and ion under the nonuniform electric field. Because the motion and the multiplication of electron and ion are the function of electric field, for the simulation of the corona discharge, we have to calculate the electric field, before the calculation of the motion and the multiplication of electron and ion. In this paper, the electric field is calculated on the assumption that the gap between a hyperboloidal needle and a plane is 1-dimension, and the motion and the multiplication of electron and ion are determined by Flux-Corrected Transport method. For this purpose, we solve the electron and ion continuity equation together with Poisson equation. We calculated the current density and the electron and ion density distributions between electrodes as well as electric field distortion due to the space charge assuming that the discharge channel radius is 100${\mu}{\textrm}{m}$. In this simulation, it is found that the current density has one peak as observed by experiment, and electric field distortion is important to the formation and the stability of the corona discharge.

  • PDF

전산 유체 해석에 의한 자동차 운반선 내부 환기 시스템 평가 (Assessment of Ventilation System for Ro/Ro Ship Using CFD)

  • 이승수;김학선;천승현
    • 대한조선학회논문집
    • /
    • 제42권1호
    • /
    • pp.10-17
    • /
    • 2005
  • Due to emission of vehicles during loading/unloading, ventilation system in Roll-on/Roll-off ship is inevitable; however it is very difficult to predict the ventilation performance before it is finally built in. Although the requirements for the ventilation system include air change rate and maximum allowable concentration of CO in the cargo holds, even prototype tests are hardly able to quantify the ventilation performance. In the present paper, a new method to assess the ventilation performance of Roll-on/Roll-off ship is proposed by using computational fluid dynamics. The air exchange is modeled by introducing multi-species transport of existing air In the holds and new air from the ventilation system. Conservation of multi-species as well as 3D Navier-Stokes equation are solved numerically in time dependent manner. Several cases of different configuration are considered. The results include predicted mass fraction of new air in the holds. It is also presented that CO concentration can be estimated based on the predicted air change performance. Due to the lack of experimental data, the computed results are not verified; however the proposed method can be applied as au assessment tool.

돼지 난포내 Alkaline Phosphatase 및 Adenosine Triphosphatase의 활성부위와 활성도 (Localization and Activity of Alkaline Phosphatase and Adenosine Triphosphatase of Ovarian Follicles in Pig)

  • 김문규;계명찬;윤현수;김종흡
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제18권2호
    • /
    • pp.123-131
    • /
    • 1991
  • In order to study the growth and maturation of ovarian follicle, the localization and activity of alkaline phosphatase(ALPase) and adenosine triphosphatase(ATPase) of the granulosa cells and theca layer were examined according to the follicle size, the follicle state and the ovarian cyclic phase in pig. Theca interna of the small follicles was more heavyly localized with reaction product by the activites of ALPase and ATPase than that of the large follicles. It is assumed that, as the follicles proceed to growth and maturation, antrum formation is the result of the follicular fluid accumulation by means of active transport by the activities of ALPase and ATPase in theca interna. The activities of ALPase and ATPase in atretic follicles were higher than those of normal follicles. These results imply that the mechanisms of follicle maturation and atresia are different according to the phase of ovarian cycle.

  • PDF

고 정밀 항공우주 유동해석 및 설계를 위한 공력계산 툴 (Essential Computational Tools for High-Fidelity Aerodynamic Simulation and Design)

  • 김종암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2006
  • As the computing environment is rapidly improved, the interests of CFD are gradually focused on large-scale computation over complex geometry. Keeping pace with the trend, essential computational tools to obtain solutions of complex aerospace flow analysis and design problems are examined. An accurate and efficient flow analysis and design codes for large-scale aerospace problem are presented in this work. With regard to original numerical schemes for flow analysis, high-fidelity flux schemes such as RoeM, AUSMPW+ and higher order interpolation schemes such as MLP (Multi-dimensional Limiting Process) are presented. Concerning the grid representation method, a general-purpose basis code which can handle multi-block system and overset grid system simultaneously is constructed. In respect to design optimization, the importance of turbulent sensitivity is investigated. And design tools to predict highly turbulent flows and its sensitivity accurately by fully differentiating turbulent transport equations are presented. Especially, a new sensitivity analysis treatment and geometric representation method to resolve the basic flow characteristics are presented. Exploiting these tools, the capability of the proposed approach to handle complex aerospace simulation and design problems is tested by computing several flow analysis and design problems.

  • PDF

표면조도가 있는 난류경계층에서의 직접수치모사 (Direct numerical simulation of the turbulent boundary layer with rod-roughened wall)

  • 이승현;성형진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.445-448
    • /
    • 2006
  • The effects of surface roughness on a spatially-developing turbulent boundary layer (TBL) were investigated by performing direct numerical simulations of TBLs over rough and smooth walls. The Reynolds number based on the momentum thickness was varied in the range $Re_{\theta}=300{\sim}1400$. The roughness elements used were periodically arranged two-dimensional spanwise rods, and the roughness height was $k=1.5{\theta}_{in}$, which corresponds to $k/{\delta}=0.045{\sim}0.125$. To avoid generating a rough wall inflow, which is prohibitively difficult, a step change from smooth to rough was placed $80{\theta}_{in}$ downstream from the inlet. The spatially-developing characteristics of the rough-wall TBL were examined. Along the streamwise direction, the friction velocity approached a constant value and a self-preserving form of the turbulent stress was obtained. Introduction of the roughness elements affected the turbulent stress not only in the roughness sublayer but also in the outer layer. Despite the roughness-induced increase of the turbulent stress in the outer layer, the roughness had only a relatively small effect on the anisotropic Reynolds stress tensor in the outer layer. Inspection of the triple products of the velocity fluctuations revealed that introducing the roughness elements onto the smooth wall had a marked effect on vertical turbulent transport across the whole TBL. By contrast, good surface similarity in the outer layer was obtained for the third-order moments of the velocity fluctuations.

  • PDF