• Title/Summary/Keyword: Fluid Transport

Search Result 567, Processing Time 0.027 seconds

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

Analysis of Thermal Control Performance of Variable Conductance Heat Pipe with Axial Grooves (축방향 그루브형 가변전열 히트파이프의 열제어 특성)

  • Park, Y.S.;Kim, D.E.;Byon, G.S.;Suh, J.S.;Lee, K.W.;Park, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1651-1656
    • /
    • 2003
  • The present study has been conducted to analytically investigate the thermal control performance of variable conductance heat pipe(YCHP) with axial grooves. The condenser port of the YCHP is occupied by a inert gas in which the concentration of gas is varied with the operation temperature and the heat transport capacity is thus varied with the operating temperature due to the variation of inert gas concentration. In this study, numerical evaluation for the thermal control of the YCHP with axial grooves is made from the 1st order diffusion model that considers the diffusive expansion of inert gas by concentration gradient. Ammonia is used as a working fluid and Nitrogen as a control gas in the Aluminum tube. As a result, the thermal performance of YCHP based on diffusion model has been compared with that of YCHP from flat front model. Additionally, it is found that the concentration of inert gas is distributed in the condenser region of YCHP with axial grooves.

  • PDF

An asymptotic analysis of the Taylor-Proudman flow in a rapidly-rotating compressible fluid (압축성 회전유체에서 발생하는 Taylor-Proudman 유동에 대한 점근해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.341-344
    • /
    • 2002
  • A matched asymptotic analysis is conducted for a compressible rotating flow in a cylindrical container when a mechanical and/or a thermal disturbance is imposed on the wall. The system Ekman number is assumed to be very small. The conditions for the Taylor-Proudman column in the interior, which were also given in the companion paper Park & Hyun, 2002) by means of the energy balancing analysis, have been re-derived. The concept of the variable, the energy content $e[{\equiv}T+2 {\alpha}^2 {\gamma}{\nu}]$, is reformulated, and its effectiveness in characterizing the energy transport mechanism is delineated. It is seen that, under the condition of the Taylor-Proudman column, numerous admissible theoretical solutions for interior flow exist with an associated wail boundary condition. Some canonical examples are illustrated with comprehensive physical descriptions. The differential heating problem on the top and bottom endwall disks is revisited by using the concept of the energy content. The results are shown to be in line with the previous findings.

  • PDF

A Study of Dynamic Simulation of a Hybrid Absorption Chiller Utilizing Solar Power (태양열을 이용한 일이중 겸용 흡수식 냉온수기 동적성능 모사연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.967-972
    • /
    • 2009
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector also were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flowrate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

  • PDF

Association of ND4L gene 10609 mutation and hearing loss in a Korean with ESRD patients

  • Kim, Eun Sook
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.3
    • /
    • pp.128-135
    • /
    • 2012
  • The kidney and cochlea have similar physiological characteristics, specifically the active transport of fluid and electrolytes, similar effects of aminoglycosides and some immunological factors. Several mitochondrial DNA (mtDNA) defects have been identified to be associated with hearing impairment either in syndromic or nonsyndromic forms. Dialysis patients had more oxidative stress than healthy subjects and this elevated oxidative stress leads to alterations of the mtDNA. To generate a more comprehensive analysis of the relationship between mitochondrial variation and hearing loss, two SNPs of 10609, 14668 position showed nominal levels of association with hearing loss. In our result, the mean PTA values in the ESRD patients were $28{\pm}13.9\;(mean{\pm}SD)dB$ and $51.0{\pm}23.2dB$ in low and high frequencies, which were significantly higher than those in the normal controls. 10609T>C and 14668C>T were significantly associated with hearing loss in the ESRD patients. In summary, our results suggest that the polymorphisms of the ND4L subunit gene might be association with ESRD patients and hearing loss.

  • PDF

Design of partial emission type liquid nitrogen pump

  • Lee, Jinwoo;Kwon, Yonghyun;Lee, Changhyeong;Choi, Jungdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.64-68
    • /
    • 2016
  • High Temperature Superconductor power cable systems are being developed actively to solve the problem of increasing power demand. With increases in the unit length of the High Temperature Superconductor power cable, it is necessary to develop highly efficient and reliable cryogenic pumps to transport the coolant over long distances. Generally, to obtain a high degree of efficiency, the cryogenic pump requires a high pressure rise with a low flow rate, and a partial emission type pump is appropriate considering its low specific speed, which is different from the conventional centrifugal type, full emission type. This paper describes the design of a partial emission pump to circulate subcooled liquid nitrogen. It consists of an impeller, a circular case and a diffuser. The conventional pump and the partial emission pump have different features in the impeller and the discharge flow passage. The partial emission pump uses an impeller with straight radial blades. The emission of working fluid does not occur continuously from all of the impeller channels, and the diffuser allows the flow only from a part of the impeller channels. As the area of the diffuser increases gradually, it converts the dynamic pressure into static pressure while minimizing the loss of total pressure. We used the known numerical method for the optimum design process and made a CFD analysis to verify the theoretical performance.

Mouse models of polycystic kidney disease induced by defects of ciliary proteins

  • Ko, Je Yeong;Park, Jong Hoon
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.73-79
    • /
    • 2013
  • Polycystic kidney disease (PKD) is a common hereditary disorder which is characterized by fluid-filled cysts in the kidney. Mutation in either PKD1, encoding polycystin-1 (PC1), or PKD2, encoding polycystin-2 (PC2), are causative genes of PKD. Recent studies indicate that renal cilia, known as mechanosensors, detecting flow stimulation through renal tubules, have a critical function in maintaining homeostasis of renal epithelial cells. Because most proteins related to PKD are localized to renal cilia or have a function in ciliogenesis. PC1/PC2 heterodimer is localized to the cilia, playing a role in calcium channels. Also, disruptions of ciliary proteins, except for PC1 and PC2, could be involved in the induction of polycystic kidney disease. Based on these findings, various PKD mice models were produced to understand the roles of primary cilia defects in renal cyst formation. In this review, we will describe the general role of cilia in renal epithelial cells, and the relationship between ciliary defects and PKD. We also discuss mouse models of PKD related to ciliary defects based on recent studies.

NUMERICAL STUDY ON FILM-COOLING EFFECTIVENESS FOR VARIOUS FILM-COOLING HOLE SCHEMES (다양한 막냉각 홀 형상에 대한 막냉각 효율의 수치해석)

  • Kim, S.M.;Lee, K.D.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.104-111
    • /
    • 2011
  • To protect the turbine blade, many cooling techniques has developed. With all other things, film-cooling has been widely used as the important alternative. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as cylindrical, crescent, louver, and dumbbell holes. To analyze the turbulent flow and the film-cooling mechanism, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been assessed in comparison with experimental data. The characteristics of fluid flow and the film-cooling performance for each shaped hole have been investigated and evaluated in terms of centerline, laterally averaged and spatially averaged film-cooling effectivenesses. The dumbbell shaped hole shows better film-cooling effectiveness than other shaped holes. And the louver and cylindrical shaped hole shows lower one, and concentrated flow on centerline only.

  • PDF

DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES (비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발)

  • Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.