• 제목/요약/키워드: Fluid Transient Analysis

검색결과 257건 처리시간 0.025초

원통형 액체 연료탱크의 초기 가속에 따른 과도응답 해석 (Transient Response Analysis of Cylindrical Liquid Fuel-Storage Tank subject to Initial Acceleration)

  • 이상영;주영신;김기환;조진래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.475-480
    • /
    • 2000
  • The transient dynamic-response analysis of fuel-storage tanks of flying vehicles accelerating in the vertical direction is achieved with finite element method. A fuel-storage tank is a representative example of the fluid-structure interaction problem, in which structure and fluid media interact strongly. For the accurate analysis of this complicated fluid-structure system, we employed ALE(arbitrary Lagrangian-Eulerian) coupling method. Two types of fuel-storage tanks, one with two baffles and the other without baffle, are considered to examine the effect of baffles. The fuel-storage tank with baffles shows more uniform hydrodynamic pressure distribution, resulting effective stress in structural region and faster convergence from transient to steady states. MSC/Dytran, a commercial FEM software for the 3D coupled dynamic analysis, is used for this analysis.

  • PDF

단일추진제 추진시스템의 과도기유체 해석 (A FLUID TRANSIENT ANALYSIS FOR THE PROPELLANT FLOW IN A MONOPROPELLANT PROPULSION SYSTEM)

  • 채종원
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.69-81
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted by using the method of characteristics(MOC). It reviews algebraic simultaneous equations method and Cramer's rule method utilized to drive the compatible and characteristic equations to understand MOC extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. The valve response time is one of the dominant parameters governing the fluid transient phenomena. The results show that the shorter closing time induces the greater pressure response amplitude. And it shows that the installation of in-line orifice is effectively to limit the fluid transients in rapid valve response time and at high pressure. But it seems that the effect of orifice weakens at slow valve response time and at low pressures.

FPSO 심정용 수직 해수펌프의 로터다이나믹 과도해석 (Rotordynamic Transient Analysis of Vertical Sea Water Lift Pump for FPSO Deep Well)

  • 김병옥;양성진;이명호
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.69-74
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for the vertical rotor system as development of vertical sea water lift pump for FPSO deep well. In a vertical rotor system, since linearized stiffness and damping coefficients of fluid film bearing are no longer be valid, hence the transient response analysis considering a fluid film force for every journal position in the bearing needs to be required. In this study, the transient response analysis of the proposed vertical pump rotor system was carried out in dry-run and wet-run conditions, respectively. The results show that orbital vibration responses of the rotor system remain stable at rated speed and thereby operating reliability of the vertical rotor system is confirmed. To overcome complexity of calculation pr ocedure and time consuming calculation of transient analysis, the calculating technique of steady-state response analysis is also proposed. The results of steady-state response obtained by applying the proposed technique to the rotor system are good agreement with the reference results, that is, transient responses.

원전 밀림관 열성층의 3 차원 수치해석 (3-Dimensional Numerical Analysis for Thermal Stratification in Surgeline in Nuclear Power Plant)

  • 김영종;김만원;고은미
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.729-734
    • /
    • 2008
  • A thermal stratification may occur in the horizontal parts of the surge line during operating transients of the pressurizer, which produces relatively high fatigue usage factor. Heat-up transient is the most severe case among the transient conditions. In this study, to study the relationship between the magnitude of thermal stratification and the length of vertical part of the surge line, some parametric fluid-structure interaction (FSI) analyses with different length variables of the vertical part of the surge line were performed for plant heat-up transient condition by using 3-dimensional numerical analysis. The conservativeness of the traditional finite element model for thermal stratification analysis based on the conservative assumption in the surge line was also discussed by comparison of the results of 3-dimensional transient FSI analysis of this study. Stresses calculated with 3-dimensional transient model were considerably reduced comparing with the traditional analysis.

  • PDF

단일추진제 추진시스템의 비정상 마찰을 고려한 과도기유체 해석 (A FLUID TRANSIENT ANALYSIS FOR THE PROPELLANT FLOW WITH AN UNSTEADY FRICTION IN A MONOPROPELLANT PROPULSION SYSTEM)

  • 채종원
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.43-51
    • /
    • 2006
  • A fluid transient analysis on the Koreasat 1 & 2 pipeline system is conducted through numerical parametric studies in which unsteady friction results are compared with quasi-steady friction results and show relatively accurate prediction of the response curve with the unsteady friction. The code developed and used in this analysis has finished verification through comparing with the original Zielke model, the full and recursive convolution model and quasi-steady model as a reference. The unsteady friction is calculated by the recursive convolution Zielke model in which a complete evolution history of velocity field is no longer required so that it makes the fluid transient analysis on the complicated system possible. The results show that the application of quasi-steady friction to model cannot predict the entire response curve properly except the first peak amplitude but the application of unsteady friction to model can predict reasonably the response curve, therefore it is to know the characteristics of the propulsion system.

A fluid transient analysis for the propellant flow with an unsteady friction in a monopropellant propulsion system

  • Chae Jong-Won;Han Cho-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.320-323
    • /
    • 2006
  • A fluid transient analysis on the Koreasat 1 & 2 pipeline system is conducted through numerical parametric studies in which unsteady friction results are compared with quasi-steady friction results and show relatively accurate prediction of the response curve with the unsteady friction. The code developed and used in this analysis has finished verification through comparing with the original Zielke model, the full and recursive convolution model and quasi-steady model as a reference. The unsteady friction is calculated by the recursive convolution Zielke model in which a complete evolution history of velocity field is no longer required so that it makes the fluid transient analysis on the complicated system possible. The results show that the application of quasi-steady friction to model cannot predict the entire response curve properly except the first peak amplitude but application of unsteady friction to model can predict reasonably he response curve, therefore it is to know the characteristics of the propulsion system.

  • PDF

Transient Buoyant Flows of a Stratified Fluid in a Vertical Channel

  • Park, Jun-Sang
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.656-664
    • /
    • 2001
  • A theoretical analysis is performed to describe the qualitative behavior of transient buoyant flows in a vertical channel. Consideration is given to the case of a fluid with a pre-existing stratification. The fluid motion is generated by giving impulsive anti-symmetric step-changes in temperature at the vertical left ad right sidewalls. The qualitative character of the flow is shown to be classified in the Rayleigh number (Ra)-Prandtl number ($sigma$) diagram. The transitory approach to the steady state can be monotonic or oscillatory, depending on ($sigma$-1)$^2$$pi$$^4$ 4$sigma$$R_a$. The prominent characteristics of time-dependent flow are discussed for large $R_a$. The profiles of temperature and velocity in the transient phase are depicted, which disclose distinctive time scales of motion. The transient process is shown to be sensitive to the Prandtl number. The detailed evolutions of flow and temperature fields are illustrated for large $R_a$.

  • PDF

이원추진제 추진시스템의 배관망에 대한 비정상 마찰을 고려한 과도기유체 해석 (A FLUID TRANSIENT ANALYSIS ON THE PIPE NETWORK OF BIPROPELLANT PROPULSION SYSTEM WITH AN UNSTEADY FRICTION)

  • 채종원;한조영;김정훈;전형열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.487-490
    • /
    • 2010
  • A fluid transient analysis on the pipe network of bipropellant propulsion system is conducted through numerical parametric studies in which unsteady friction results are compared with quasi-steady friction results and also show the pressure drop results during the liquid apogee engine firing. The fluid transient analysis program has verified through comparing with the original Zielke model, the full and recursive convolution model and quasi-steady model as a reference. And the pressure drop program also has verified through comparing with results of the well-known program, EPANET2. The bipropellant propulsion system has two different fluids as fuel and oxidizer, and mostly they are hypergolic combination so that the valve opening and closing of the thrusters, that cause the pressure waves, shall take place simultaneously to get proper performance. The different physical properties of the fuel and oxidizer result in the different responsive to the same valve opening and closing. The response results may be helpful to know the characteristics of the bipropellant propulsion system and design it.

  • PDF

단일추진제 추진시스템의 과도기유체 해석 (A fluid transient analysis for the propellant flow in a monopropellant propulsion system)

  • 채종원;한조영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.173-181
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted using the method of characteristics (MOC). Algebraic simultaneous equations method and Clamor's rule method utilized to drive the compatible and characteristic equations are reviewed to understand MOC more extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. Also this work describes the reason that the propulsion system of Koreasat 1 has no orifice to control flow transients or to limit the initial hydrazine flow rate for the first-pulse firing.

  • PDF

터보차져의 로터다이나믹 해석모델 개발 및 진동응답 해석 (Development of Rotordynamic Analytical Model and Analysis of Vibration Response of a Turbocharger)

  • 김병옥;이안성
    • 한국유체기계학회 논문집
    • /
    • 제13권5호
    • /
    • pp.35-42
    • /
    • 2010
  • This paper deals with the development of analytical model of a turbocharger and its detail rotordynamic analysis. Two analytical models, which are verified by experimental modal testing, are proposed and the analytical model including rotor shaft extended to compressor and turbine wheel end side is chosen. A rotordynamic analysis includes the critical map, Campbell diagram, stability, and unbalance response, especially nonlinear transient response considering nonlinear fluid film force at bearings. Although the linearized analysis accurately predicts the critical speeds, stability limit, and stability threshold speed, the predicted vibration results are not valid for speeds above the stability threshold speed since the rotor vibrates with a subsynchronous component much larger than the one synchronous with rotor speed. Hence, for operating speed above the stability threshold, a nonlinear transient analysis considering nonlinear fluid film force must be performed in order to accurately predict vibration responses of rotor and guarantee results of analysis.