• 제목/요약/키워드: Fluid Temperature

검색결과 2,983건 처리시간 0.024초

Modified TOUGHREACT를 이용한 지중 열교환기 내 순환 유체의 온도 분포 추정 (A Study to Calculate Inlet Fluid Temperature of the Borehole Heat Exchanger (BHE) using Modified TOUGHREACT)

  • 김성균;배광옥;이강근;심병완;송윤호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.477-480
    • /
    • 2007
  • Inlet fluid temperature of the BRE in the geothermal heat pump system depends on heat exchange rate between the refrigerant of the heat pump and the leaving fluid from the BRE. Because the outlet fluid temperature of the BHE varies with time, inlet fluid temperature has to vary with time. In this study, the module to calculate inlet fluid temperature is developed, which can consider the time-varying outlet fluid temperature and the heat exchange capacity of the heat pump. It is assumed that heat loss or gain of the leaving fluid from outlet to inlet of the BHE is negligible, except when the fluid contacts with the refrigerant of the heat pump. This module is combined with TOUGHREACT, a widely accepted three-dimensional numerical simulator for heat and water flow and geochemical reactions in geothermal systems and is applied to data analyses of the thermal response test.

  • PDF

ER 유체의 온도상승에 의한 ER 클러치의 성능변화 예측 (Estimation of Performance Variation of ER Clutch due to Temperature Increase of ER Fluid)

  • 이규한;심현해;김창호;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.151-166
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a controlled system with electric field strength. Current problem of this device is that the temperature of ER fluid increases when ER clutch is operating and affects the performance of ER clutch. This study was undertaken to estimate this performance variation due to temperature increase of ER fluid. Analytic power transmission relationships and the temperature increase model using the rheological model of ER fluid were developed and the dynamic model of proposed ER clutch system was constructed, also. With this relationships, effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described and performance variations due to temperature increases of ER fluid were estimated. In conclusion, compared with neglecting temperature increase effects, a performance of ER clutch was very differential. Therefore, to achieve uniform performance of ER clutch, we have to improve thermal stability of ER fluid with a view point of material development and design carefully ER clutch considering temperature increase effects with a view point of mechanical design skill.ign skill.

  • PDF

부유퇴적물의 초음파 특징: 온도의 효과 (Ultrasonic Characterization of Fluid Mud: Effect of Temperature)

  • Kim, Gil-Young;Kim, Dae-Choul;Kim, Jeong-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권4E호
    • /
    • pp.140-145
    • /
    • 2004
  • A laboratory study was carried out to investigate the change of ultrasonic velocity as a function of temperature for fluid mud (i.e., suspension). Pulse transmission technique with ultrasonic wave was used for ultrasonic velocity measurement. The five samples for fluid mud were prepared for concentration range of $30.6{\%}\;(1.24\;g/cm^{3}\;in\;density),\;23.3{\%}\;(1.19\;g/cm^{3}),\;11.5{\%}(1.10\;g/cm^{3}),\;7.8{\%}\;(1.08\;g/cm^{3}),\;and\;3.8{\%}\;(1.05\;g/cm^{3})$ by weight. The ultrasonic velocity in fluid mud was investigated to increase $(approximately\;2.83\;to\;4.95\;m/s/^{\circ}C)$ with increasing temperature, due to the effect of viscosity and compressibility of water with changing temperature. But the increasing rate tends to decrease at temperature higher than $30^{\circ}C,$ caused by the effect of viscosity. The concentration of fluid mud more affect to the ultrasonic velocity at higher temperature range than that at lower temperature. Overall the temperature effect on the ultrasonic velocity in fluid mud was a similar rate as for distilled water and seawater, suggesting fluid mud significantly depends on the behavior of water.

혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구 (A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe)

  • 김석범;박종호
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.

배전용 몰드변압기의 온도특성 파악을 위한 열유동해석 (Thermal Fluid Flow Analysis for Temperature Characterization of Mold Transformer in Distribution Power System)

  • 김지호;이정근;이기식;이욱;이향범
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.6-11
    • /
    • 2013
  • In this paper, the temperature characteristics of mold transformer for the distribution power system have been analyzed by using computational fluid dynamics(CFD). The model has been modeled by coil, cores, insulating materials and frames about 3MVA grade mold transformer and analyzed the temperature distribution of the structure with a heat fluid. The fluid, which is incompressible ideal gas, is analyzed as a turbulent flow phenomenon on the assumption that it is natural cooling of transformer cooling system. Through this study, by examining the temperature distribution and hot-spot of the structure field of the mold transformer, cooling design and temperature distribution information, which are demanded for designing are estimated.

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

열선 유속계에 대한 유체 온도의 보정 (The Correction of Fluid Temperature for Hot-wire Anemometer)

  • 심상학
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.92-97
    • /
    • 1999
  • This paper reports by simple method that is quickly corrected the effects of fluid temperature for the hot wire anemometer. We are concerned with a variable output of hot wire anemometer on arbitrary fluid temperature. Hot wire by measuring boundary layer of turbulent flow has been calibrated by arbitrary temperature lower than 10$0^{\circ}C$, and velocity lower than 20m/s. As a result, we could pick up the temperature factor affected by output of hot wire anemometer from related in output of arbitrary temperature to output of room temperature. By using temperature factor on the output of hot wire anemometer, we also obtained that the relationship of velocity was of no effect by temperature of fluids. About results of calibrated hot wire, uncertainly of velocity is 2.15% at room temperature and 3.1% at arbitrary temperature.

  • PDF

흡기조건의 변화에 따른 공기조화용 회전재생기에 관한 실험적 연구 (An Experimental Study on the Rotary Regenerator for Air Conditioning according to Variable Inlet Conditions)

  • 이태우;조진호;서정일
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.422-429
    • /
    • 1990
  • The experimental study investigates two aspects of counterflow sensible heat regenerator operation. First, it examines the regenerator performance in periodic steady state operation with spatially nonuniform inlet temperature in one of the fluid stream. Second, the study examines the transient response of a regenerator to a step change in the inlet temperature of one of the fluid streams. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change of temperature nonuniformities is analyzed in terms of the change in steady state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. an experimental analysis has been conducted using a counterflow, parallel passage, and rotary regenerator made from polyethylene film. Efficiencies follow similar trends with increasing matrix to fluid capacity rate ratio for the balanced and symmetric regenerator with nonuniform inlet temperature.

제동시 피스톤 소재를 고려한 브레이크 오일 온도의 수치적 예측 (Numerical Prediction of Brake Fluid Temperature Considering Materials of Piston During Braking)

  • 김수태;김진한;김주신
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.445-450
    • /
    • 2004
  • Recently, many studies have been performed and good results have been reported in literature on the prediction of the brake disk temperature. However, study on the brake fluid temperature is rarely found despite of its importance. In this study, brake fluid temperature is predicted according to material property of brake piston. For the analysis, a typical disk-pad brake system is modeled including the brake disk, pad, caliper, piston and brake fluid. Vehicle deceleration, weight distribution by deceleration, disc-pad heat division and the cooling of brake components are considered in the analysis of heat transfer. Unsteady-state temperature distribution are analyzed by using the finite element method and numerical results are compared with the vehicle test data

  • PDF