• Title/Summary/Keyword: Fluid Tank

Search Result 570, Processing Time 0.028 seconds

A Study on Vibration Characteristics in Water Tank Structures -Change of Aspect Ratio and Pressure Distribution- (접수 탱크 구조물의 진동특성에 관한 연구 - 종횡비 변화와 압력분포 -)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.80-87
    • /
    • 2003
  • Tank structures in ships are in contact with various fluid. The vibration characteristics of those structures are strongly affected by the added mass due to containing fluid. It is important to predict vibration characteristics of tank structures, but it is difficult to do. That's because the interaction problem concerned with the free surface, the variation of water depth and stiffener is to be considered between the fluid and the structure. Many authors have studied vibration of rectangular tank structures containing water. Kito studied added mass effect of water in contact with thin elastic flat plates. Kim et al. studied flexural vibration of stiffened plates in contact with water. However, few researches on dynamic interaction tank walls with water are reported in the vibration of rectangular tanks recently. in the present report, the coupling effect of added mass of fluid and structural constraint between panels on each vibration mode changing breadth of elastic plate, and dynamic pressure distribution have investigated numerically and discussed.

Frequency analysis of liquid sloshing in prolate spheroidal containers and comparison with aerospace spherical and cylindrical tanks

  • Mohammad Mahdi Mohammadi;Hojat Taei;Hamid Moosazadeh;Mohammad Sadeghi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.439-455
    • /
    • 2023
  • Free surface fluid oscillation in prolate spheroidal tanks has been investigated analytically in this study. This paper aims is to investigate the sloshing frequencies in spheroidal prolate tanks and compare them with conventional cylindrical and spherical containers to select the best tank geometry for use in space launch vehicles in which the volume of fuel is very high. Based on this, the analytical method (Fourier series expansion) and potential fluid theory in the spheroidal coordinate system are used to extract and analyze the governing differential equations of motion. Then, according to different aspect ratios and other parameters such as filling levels, the fluid sloshing frequencies in the spheroidal prolate tank are determined and evaluated based on various parameters. The natural frequencies obtained for a particular tank are compared with other literature and show a good agreement with these results. In addition, spheroidal prolate tank frequencies have been compared with sloshing frequencies in cylindrical and spherical containers in different modes. Results show that when the prolate spheroidal tank is nearly full and in the worst case when the tank is half full and the free fluid surface is the highest, the prolate spheroidal natural frequencies are higher than of spherical and cylindrical tanks. Therefore, the use of spheroidal tanks in heavy space launch vehicles, in addition to the optimal use of placement space, significantly reduces the destructive effects of sloshing.

Natural Frequency Characteristics of a Cylindrical Tank Filled with Bounded Compressible Fluid (압축성 유체로 충진된 원통형 탱크의 고유진동수의 특성)

  • 정경훈;김강수;박근배
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.291-302
    • /
    • 1997
  • This paper presents an analytical method for evaluating the free vibration of a circular cylindrical tank filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical tank with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a comercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the liquid-filled tank structure was found. The compressiblity and the fluid density effects on the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the tank, whereas the compressibility of fluid affects mainly on the natural frequencies of lower circumferential modes.

  • PDF

Seismic response analysis of an oil storage tank using Lagrangian fluid elements

  • Nagashima, Toshio;Tsukuda, Takenari
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.389-410
    • /
    • 2013
  • Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is formulated based on the displacement finite element method considering only volumetric elasticity and its element stiffness matrix is derived by using one-point integration method in order to avoid volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational condition for fluid motion and modifies element mass matrices through the projected mass method to suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell elements, respectively, and the transient response of the floating roof structure or the free surface are evaluated by implicit direct time integration method. The results of seismic response analyses are compared with those by other method and the validation of the present analysis using three-dimensional Lagrangian fluid finite elements is shown.

A Study on Vibration Characteristics in Water Tank with Multi-panels (복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.

Sloshing Analysis of a Simple Tank using Fluid-structure Interface Method (유체-구조 연성 방법에 의한 단순 탱크 슬로싱 해석)

  • Kang, Sung-Jong;Seo, Hong-Jae;Kim, Byung-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Fuel tank sloshing noise of vehicle is caused by flow impact on the tank wall during sudden braking, and the sloshing vibration of tank wall is a coupled phenomenon of the fuel inside tank and tank wall structure. Therefore, Fluid-Structure Interface(FSI) analysis technology should be adopted to predict accurately the sloshing vibration. In this study, FSI approach was employed to analyze sloshing phenomenon for a simple tank model with velocity change of the actual vehicle test. First, the simulated results for rigid tank model were compared with those for deformable tank model. Next, influence of baffle location and shape of baffle holes on the acceleration magnitude and the maximum stress of tank wall was investigated. In addition, sloshing analysis for tank with another baffle type was carried out.

Analysis of Fluid Flows in a Stirred Tank Using Computational Fluid Dynamics (전산유체역학을 이용한 교반탱크 내 유체흐름 해석)

  • Kim, Mi Jin;Lee, Kyung Mi;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.337-341
    • /
    • 2010
  • The flow patterns in a stirred tank, 1m in diameter and 1 m in height, were studied using CFX, a commercial computational fluid dynamics program, with the impeller rotation speed, the impeller blade angle and the tank-bottom shape varied and the baffles included or excluded. A vortex was observed in the center of the tank in the absence of the baffles, and the intensity of the vortex increased with increasing the rotation speed. The vortex was considerably reduced in the presence of the baffles. An increase in the blade angle increased the vertical flow and decreased the vortex intensity. The flow in the corners of the tank bottom turned smoother as the tank bottom was varied in shape from flat to round.

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

A Study on the Effects of the Period Control Device of Anti-Rolling Tanks (감요수조의 주기조절 장치 효과에 관한 연구)

  • 유재문;김효철;이현엽
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The effect of the passive anti-rolling tanks(ART) decreases when the roll period of the vessel does not match the designed oscillating period of the fluid in the tank. In order to improve the effect of the passive ART, the damping plates are installed in the lower duct of the ART to adjust the oscillating period of the fluid. The effects of the damping plates on the oscillating period of the fluid and the changes of the stabilizing moments are examined through the series of bench tests. Acryl model tank larger than 1m breadth is made to minimize the viscous effect of the tank and the stabilizing moments of the tank are measured for various roll angles. Using the obtained tank damping coefficient, RAO(Response Amplitude Operator) value in the resonance range is computed and the stabilizing effect of a ART has been estimated.

Analysis of land-based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation (전산 유체 역학(CFD)을 이용한 원형 양식 사육 수조 내부 유동장 해석)

  • KWON, Inyeong;KIM, Taeho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.395-406
    • /
    • 2020
  • The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.