• Title/Summary/Keyword: Fluid Tank

Search Result 574, Processing Time 0.025 seconds

A study on formation of slurry ice by the reversing flow (역전 유동층에 의한 슬러리아이스 생성에 관한 연구)

  • Oh, C.;Mun, S.B.;Choi, Y.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by putting ball into test section to disturb ice adhesion. And at this experiment it used ethylene glycol-water solution and the concentration is 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank. brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter data logger for fluid temperature measuring and a vertical circular tube with two copper tubes as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 0.07 to 0.13m/s and ball diameter is 10mm, 15mm. Also ball filling rate is 33%, 50%.

An experimental study on formation of slurry ice in reversing flow (역전 유동층 내에서의 슬러리아이스 생성에 관한 실험적 연구)

  • Choi, Young-Gyu;Yoon, Seok-Hun;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.49-50
    • /
    • 2006
  • This study experimented to observe an influence of experimental conditions on production characteristics of slurry ice by putting ball into test section to disturb ice adhesion. And at this experiment it used ethylene glycol-water solution and the concentration is 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank, brine tank. pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring and a vertical circular tube with two copper tubes as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 0.07 to 0.13m/s and ball diameter is 10mm, 15mm. Also ball filling rate is 33%, 50%.

  • PDF

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.

Fluid Flow and Stirring in a Rectanguar Tank - Effect of the Plate Length - (직사각형 용기 내에서의 유동 및 교반특성 - 중앙평판 길이의 영향 -)

  • 문종춘;서용권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2698-2705
    • /
    • 1994
  • In this paper, the fluid flow and stirring in a rectangular tank focussing on the effect of the plate length is studied numerically and experimentally. the flow model and the method of analysis are the same as those reported previously. The stirring effect changes considerably when the plate length is varied. When the plate is short, the friction at the bottom wall reduces the strength of the vortical flow resulting in a lower stirring effect. When the plate is long, the stirring effect is decreased due to the growth of the regular regions near the lower corners. The stirring effect is the best when the plate length is roughly half the width of the container.

Sloshing Flows in Ship Tanks

  • Kim, Yonghwan;Shin, Yung-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.3
    • /
    • pp.21-32
    • /
    • 2000
  • In the present paper, the sloshing flow in the liquid holds of a large tanker is simulated using a numerical method. In the fluid domain, the three-dimensional Navier-Stokes equation with free surface is solved using a finite difference method, and the realistic shapes of multi holds are modeled including the internal members. The time-history of the tank motion is obtained using a time-domain program for ship motion. In order to computer the impulsive pressures on internal structures, a concept of buffer zone is adopted near the tank ceiling during impact occurrence. This study demonstrates that the global fluid motion in the multi liquid holds of ships and FPSO's can be simulated using the numerical method and the corresponding local pressure can be predicted with reasonable accuracy.

  • PDF

Highly Efficient PIV Measurement of Complex Flows Using Refractive Index Matching Technique

  • NISHINO Koichi;KAWAGUCHI Daisuke;KOSUGI Takashi;ISODA Haruo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-63
    • /
    • 2004
  • various applications is presented. It is based on rapid-prototyping of transparent model for flow visualization and on the use of refractive index matching that enables efficient and clear visualization of the flow inside the model. The model is immersed in the index-matching fluid in a glass tank so that any displacement and rotation of the model in the tank have no influence on the optical setup for image acquisition to be made through a glass wall. This can facilitate greatly the camera calibration for stereo PIV and 3-D PTV. As the flow model is generated directly from 3-D surface data, no laborious preparation of the flow model is needed. This approach for seamless linking of model generation and PIV measurement is applicable to various flow measurements in automobile, ship building, fluid machinery, turbine, electrical appliances, heat exchanger, electronic cooling, bio-engineering and so on.

  • PDF

Uncertainty Characteristics of Diverter for Flowmeter Calibration System (액체용 유량계 교정시스템의 Diverter 불확도 특성 연구)

  • Lee, Dong-Keun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.50-55
    • /
    • 2008
  • The diverter system is a key component in achieving a high accuracy liquid flow rate standard using a static gravimetric system with a flying start and stop method. The diverter is a moving device used to direct flow alternately along its normal course(by pass) or towards the weighing tank. The time needed for collection into the weighing tank is measured using a timer. So it is important to the diversion period is sufficiently fast and triggering point of timer which is determined the filling time. On this studies show that uncertainty of diverter system for changing diversion speed and triggering point was estimated in accordance with Guide to The Expression of Uncertainty in Measurement(ISO).

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves (규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Kwon, Ki-Jo;Cho, Sung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

An Estimation Technology of Temperature Rise in DSES using Three-Dimensional Coupled-Field Multiphysics (연성해석을 이용한 초고압 DSES 온도상승예측)

  • Yoon, Jeong-Hoon;Ahn, Heui-Sub;Choi, Jong-Ung;Park, Seok-Weon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.847_848
    • /
    • 2009
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule‘s losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in GIS..

  • PDF