• Title/Summary/Keyword: Fluid Power Circuits

Search Result 14, Processing Time 0.024 seconds

Case Study of Flipped-learning on a Basic Engineering Practice (공학전공기초실습에 플립러닝 적용사례)

  • Huh, Jun-young;Han, Soo-min
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.83-89
    • /
    • 2016
  • Flip-learning enables an effective teaching and learning in accordance with the deepening degree of engineering education as a framework that enables learning according to the individual differences of the theoretical aspects, and solving real problems and practice of the learner-centered education through the application of this. The subject of basic fluid power practice which is used in various industries requiring factory automation aims at understanding of the composition and operating principles of pneumatic components and programming of electric sequential circuits, building the design ability of pneumatic system. This subject goes by 3 hour classes with theory and practice side by side. So it has not enough time to instruct students various contents related in this subject. In this study, the instructional design was performed according to the KOREATECH (Korea University of Technology and Education) flip-learning basic model for the effective teaching of 'Basic Fluid Power Practice' in basic engineering practice courses,. And the effectiveness of flip-learning is analyzed through the students survey after performing classes.

A Study on Energy Saving of IMV Circuit using Pressure Feedback

  • Park, Hyoung Gyu;Nahian, Syed Abu;Anh, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.31-44
    • /
    • 2016
  • In recent hydraulic actuation systems, conventional hydraulic spool valves with pressure compensators are becoming less popular, after the introduction of the independent metering concept for valves. Within this concept, four valves are needed for actuating a single cylinder. Subsequently, this increases the freedom of controlling both chamber pressures of the cylinder, and it then provides for electronically-controlled pressure compensation facilities. Additionally, this has the potential to save valuable energy. The primary focus of this paper is to develop a new generation of hydraulic circuits using the independent metering valve (IMV). This configuration can function well as a conventional IMV circuit while providing better pressure control. We first describe the working principles of five distinct modes of the proposed IMV system. Then, mathematical models for each working mode are presented. Finally, we present numerical simulations that have been carried out to evaluate the system performance, in comparison with that of the conventional IMV configuration. The simulation results demonstrate that the performance of the new IMV configuration is superior to the conventional IMV system in terms of energy savings.

A Study on Simulation of Shift Sensitivity of Small Forklift Transmission using Direct Control Method (직접제어 방식을 이용한 소형 지게차 변속감도 시뮬레이션에 관한 연구)

  • Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.8-14
    • /
    • 2014
  • The transmission control method of a small forklift is classified into a pilot control method and a direct control method. In the pilot control method, the complex hydraulic circuit consists of many components, making the production process too costly and time consuming. The direct control method contains fewer components that can be configured to simple hydraulic circuits. As another advantage, the input profile easily changes the shift sensitivity of the transmission. Therefore, this research considers the characteristics of the direct control method in the development of hydraulic system design. This paper will present a simulation of the direct control transmission using AMESim. First, modeling of the direct control method is obtained and simulated with real parameters. The simulation results then are carried out and compared with the experimental results to verify and analyze the characteristics of the direct control method.

Analysis of Diagnosis Algorithm Implemented in TCU for High-Speed Tracked Vehicles (고속 무한궤도 차량용 변속제어기 진단 알고리즘 분석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.30-38
    • /
    • 2018
  • Electronic control units (ECUs) are currently popular, and have evolved further towards the high-end application of autonomous vehicles in the automotive industry. Such digital technologies have also become widespread, in agriculture and construction equipment. Likewise, transmission control of high-speed tracked vehicles is based on the transmission control unit (TCU), performing complex gear change control functions, and diagnostic algorithms (a TCU's self-diagnostic and reporting capability of malfunction data through CAN communication). Since all functions of TCU are implemented by embedded-software, it is hardly possible to analyze specifications by reverse engineering. In this paper a real-time transmission simulator adaptable to TCU is presented, for analysis of diagnosis algorithm and standards. Signal simulation circuits are deliberately designed considering electrical characteristics of TCU inputs and various analysis tools, such as analog input auto scan function, and global output enable switch, are implemented in software. Test results from hardware-in-the-loop simulator verify tolerance time for each error, as well as cause of fault, error reset conditions.