• Title/Summary/Keyword: Fluid Power

Search Result 2,816, Processing Time 0.029 seconds

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

A study on the force control of a servo actuator with built-in MR Valve (MR 밸브 내장형 서보 액추에이터의 힘 제어에 관한 연구)

  • Ahn K.K.;Song J.Y.;Kim J.S.;Ahn Y.K.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A servo actuator with a valve using MR (Magneto-Rheological) fluid is proposed for fluid control systems. The MR fluid is well known as a functional fluid whose apparent viscosity is controlled by the applied magnetic field strength. The pressure in the MR cylinder can be controlled by the applied magnetic field strength. Good points of the MR cylinder are more simple, compact and reliable structure than a conventional oil hydraulic cylinder. The experimental results show that the MR cylinder could be used as a servo actuator.

  • PDF

A Study of Coupled Electromagnetic-Thermal Field Analysis for Temperature Rise Prediction of Power Transformer (전력용 변압기의 온도상승 예측을 위한 전자계-열계 결합해석기법 연구)

  • Ahn, Hyun-Mo;Kim, Min-Soo;Song, Jae-Sung;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1838-1845
    • /
    • 2011
  • This paper deals with coupled electromagnetic-thermal field analysis for thermal fluid analysis of oil immersed power transformer. Electric power losses are calculated from electromagnetic field analysis and are used as input source of thermal field analysis based on computational fluid dynamics(CFD). Particularly, In order to accurately predict the temperature rise in oil immersed power transformer, the thermal problem should be coupled with the electromagnetic problem. Moreover, to reduce analysis region, the heat transfer coefficient is applied to boundary surface of the power transformer model. The coupling method results are compared with the experimental values for verifying the validity of the analysis. The predicted temperature rises show good agreements with the experimental values.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

Hydrodynamic Entrance Lengths and Entrance Correction Factors for a POWER-LAW Fluid in a Circular Duct (원관에서 POWER-LAW 유체의 수력학적 입구길이와 입구보정계수에 관한연구)

  • 오광석
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.261-266
    • /
    • 1995
  • 원관에서 power-law 유체에 대하여 수력학적 입구길이와 입구보정계수를 측정할수 있는 새로운 방법이 개발되었다. 유변학적 성질을 측정할수 있는 긴관과 입구보정계수를 측 정할수 있는 짧은 관을 가진 새로운 모세관 점도계를 이용하여 증류수를 실험한 결과 유변 학적 성질과 입구 보정계수가 표준값과 비교하여 1%안의 오차를 얻었다. Power-law 유체 에 대한 해석 및 실험결과(Carbopol 960 용액)도 이미 보고된 값과 $\pm$6% 이내로 잘 일치하 였다.

  • PDF

Theoretical analysis on vibration characteristic of a flexible tube under the interaction of seismic load and hydrodynamic force

  • Lai, Jiang;He, Chao;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.654-659
    • /
    • 2020
  • The reliability of the spent fuel pool instrument is very important for the security of nuclear power plant, especially during the earthquake. The effect of the fluid force on the vibration characteristics of the flexible tube of the spent fuel pool instrument needs comprehensive analysis. In this paper, based on the potential flow theory, the hydrodynamic pressures acting on the flexible tube were obtained. A mathematical model of a flexible tube was constructed to obtain the dynamic response considering the effects of seismic load and fluid force, and a computer code was written. Based on the mathematical model and computer code, the maximum stresses of the flexible tube in both safe shutdown earthquake and operating basis earthquake events on the spent fuel pool with three typical water levels were calculated, respectively. The results show that the fluid force has an obvious effect on the stress and strain of the flexible tube in both safe shutdown earthquake and operating basis earthquake events.

An Experimental Study on the Small Power Generation of Temperature difference using the Freon-22 as Working Fluid (프레온-22를 작동유체로 사용한 소용량 온도차 발전에 관한 실험적 연구)

  • Jhoun, C.S.;Shin, I.H.;Huh, C.S.
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.26-38
    • /
    • 1988
  • If proper design and selection of the working fluid are made the power generation system of temperature difference could achieve more efficient results than others. This paper is to analysis the production of its power generation due to several parameters. Making the power generation system, the characteristics of power output are investigated to obtain its basic data for design. This results of this experiment are as follows. 1. The most proper working fluid in the system is Freon-22 having high stability and difference between the outlet pressure, $P_E$ of evaporator and outlet pressure, $P_c$ of Condenser. 2. With the increase of temperature difference between evaporator and condenser, the output in the system increases linearly. 3. The generation efficiency is largely dependent on the type or form of propeller, nozzle and optimum design of heat exchanger.

  • PDF

Thermal Fluid Flow Analysis for Temperature Characterization of Mold Transformer in Distribution Power System (배전용 몰드변압기의 온도특성 파악을 위한 열유동해석)

  • Kim, Ji-Ho;Lee, Jeong-Gun;Lee, Ki-Sik;Rhee, Wook;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • In this paper, the temperature characteristics of mold transformer for the distribution power system have been analyzed by using computational fluid dynamics(CFD). The model has been modeled by coil, cores, insulating materials and frames about 3MVA grade mold transformer and analyzed the temperature distribution of the structure with a heat fluid. The fluid, which is incompressible ideal gas, is analyzed as a turbulent flow phenomenon on the assumption that it is natural cooling of transformer cooling system. Through this study, by examining the temperature distribution and hot-spot of the structure field of the mold transformer, cooling design and temperature distribution information, which are demanded for designing are estimated.

Development of Thermal Type Fluid Level Transmitter for Water Level Measurement of Containment Building in Nuclear Power Plant (원자력 발전소 격납 건물의 수위 측정을 위한 열식 레벨 측정기 개발)

  • Yoon, Joon-Yong;Seong, Nak-Won;Lee, Chul-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.404-410
    • /
    • 2001
  • A new thermal type fluid level transmitter was designed and tested at the HITROL R&D institute. The relation of heat transfer and electric resistance was adopted as an operation principle. The length of a fabricated level transmitter was two meters and a water under normal temperature was used as a working fluid for the experiment Finally, the new product could have a high precision, acceptable accuracy and reasonable response time. Foreign-made level transmitter of this type is under in use for measuring water level of containment building in nuclear power plants so far. It is expected that new product will substitute it.

  • PDF