• 제목/요약/키워드: Fluid Mixing

검색결과 559건 처리시간 0.027초

Spatial moment analysis of multispecies contaminant transport in porous media

  • Natarajan, N.;Kumar, G. Suresh
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.76-83
    • /
    • 2018
  • Spatial moment analysis has been performed on the concentration of the first species in a multispecies solute transport in porous media. Finite difference numerical technique was used in obtaining the solute concentration. A constant continuous source of contaminant was injected at the inlet of the domain. Results suggest that the decaying of solute mass increases as the magnitude of mean fluid velocity increases. The dispersion coefficient is highly time dependent under decaying of solutes with a complex behavior of mixing of solutes. The solute mobility and mixing varies non-linearly with time during its initial period, while the same ceases with higher decay rates of the first species much faster.

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (I) (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (1))

  • 김경천;정양범;김상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권3호
    • /
    • pp.690-700
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a circular cylinder were examined in a wind tunnel. In order to produce strong thermal stratifications, a compact heat exchanger type variable electric heater is employed. Linear temperature gradient of up to $250^{\circ}C/m$ can be well sustained. The velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured and the smoke wire flow visualization method was used to investigate the wake characteristics. It is found that the temperature field effects as an active contaminant, so that the mean velocity and temperature profiles can not sustain their symmetricity about the wake centerline when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower half of the wake in a stably stratified flow.

Roughness effect on performance of a multistage axial compressor (다단 축류압축기의 표면조도가 성능에 미치는 영향)

  • Han, Kyung-ho;Kang, Young-seok;Kang, Shin-hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.264-270
    • /
    • 2002
  • This paper presents roughness effects on flow characteristics and efficiency of multi-stage axial compressor using numerical simulation. which is carried out with a commercially available software, CFX-TASCflow. In this paper, the third of four stages of GE low pressure compressor is considered including me stator and rue rotor. Mixing-plane approach is adopted to model the interface between the stator and the rotor: it is appropriate for steady state simulation. First, a flat plate simulation was performed to validate how exact the numerical simulation predicts the roughness effect for smooth and rough walls. Then GE compressor model was calculated about at each roughness height. Concluding, very small roughness height largely affects the performance of compressor and the increasing rate of loss decrease as roughness height increase.

  • PDF

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (5kW 용융탄산염 연료전지 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Jung, Sang-Chun;Lee, Sung-Yoon;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2008
  • An ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The Ejector is applied for a variety of industrial fields such as refrigerators and power plants. It is adopted to recycle anode off gas safely in 5kW Molten Carbonate Fuel Cell system of KEPRI(Korea Electric Power Research Institute). The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat. In addition, the performance curve of the ejector and the differential pressure in diffuser is observed.

  • PDF

A Study on the curvature Effect of microchannel within Electroosmotic Flow (전기삼투 유동 중 마이크로 채널 내 곡률 변화에 따른 혼합특성에 대한 연구)

  • Heo, Hyeung-Seok;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.107-110
    • /
    • 2005
  • In this study a newly designed and electro-osmotic micro-mixer is proposed. This design is comprised of a channel and metal electrodes attached in the local side wall surface, To investigate the flow patterns a numerical method is employed. To obtain the flow patterns numerical computation are performed by using a commercial code, CFD-ACE. The fluid-flow solutions are then cast into studying the characteristics of stirring with aid the Mixing index. Focus is given the effect on the electro osmotic flow characteristics under the curvature variation in the microchannel with the local of the electric field

  • PDF

Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model (정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

The Effect of Eccentricity on Aerated Oil in High-Speed Journal Bearing

  • Chun, Sang Myung
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2001
  • The influence of aerated oil on a high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction force may be changed so visibly for the high speed bearing operation.

  • PDF

Magnetically Driven Assemblies of γ-Fe3O4 Nanoparticles into Well-Ordered Permanent Structures

  • Byun, Myunghwan
    • Journal of Powder Materials
    • /
    • 제24권3호
    • /
    • pp.229-234
    • /
    • 2017
  • We report on a simple and robust route to the spontaneous assembly of well-ordered magnetic nanoparticle superstructures by irreversible evaporation of a sessile single droplet of a mixture of a ferrofluid (FF) and a nonmagnetic fluid (NF). The resulting assembled superstructures are seen to form well-packed, vertically arranged columns with diameters of $5{\sim}0.7{\mu}m$, interparticle spacings of $9{\sim}2{\mu}m$, and heights of $1.3{\sim}3{\mu}m$ The assembled superstructures are strongly dependent on both the magnitude of magnetic field and the mixing ratio of the mixture. As the magnitude of the externally applied magnetic field and the mixing ratio of the mixture increase gradually, the size and interspacing of the magnetic nanoparticle aggregations decrease. Without an externally applied magnetic field, featureless patterns are observed for the ${\gamma}-Fe_3O_4$ nanoparticle aggregations. The proposed approach may lead to a versatile, cost-effective, fast, and scalable fabrication process based on the field-induced self-assembly of magnetic nanoparticles.

Quantification of the Mixing Effect by Using the Method of Material-Stretching Mapping (물질신장 사상법에 의한 혼합효과의 정량화)

  • Suh Y. K.
    • Journal of computational fluids engineering
    • /
    • 제9권4호
    • /
    • pp.20-33
    • /
    • 2004
  • In this study a stretching-mapping method is proposed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. In this method, the mapping tensor associated with the deformation of each fluid material is first obtained. Then deformations of a lot of materials are obtained by applying the mapping tensor. The local stretching rates and their space-average values are next computed with the mapped deformations. Application to a simple time-periodic flow within a cavity shows that the method is indeed effective compared with the conventional method; i.e. the mapping method is fast and yields the same results as the conventional one.

Mixing of Highly Viscous Fluid by Using a Screw-Type Impeller (스크류형 임펠러에 의한 고점도 유체의 혼합)

  • Heo, Seong-Gyu;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.138-142
    • /
    • 2007
  • 본 연구는 고점도 유체의 혼합을 위한 교반기 설계의 기초연구로서 스크류 형상의 임펠러(또는 헬리컬 임펠러)를 가지는 교반기 내의 유동과 이에 따른 유체혼합 특성을 수치해석을 통해 가시화한 것이다. 이와 더불어 양호한 혼합효과를 가져다 줄 것으로 예상되는 엇갈림형 스크류 임펠러의 모델을 제안하였다. 수치해석상의 유체는 고점도의 Newton유체로 가정하였으며 임펠러의 회전속도는 6[rpm]으로 아주 작게 하여 저 레이놀즈수(약 Re=3)에서 혼합효과를 연구하였다. 또한 각종 설계 파라미터를 변화시켜 혼합 양상의 차이를 분석하여 설계에 반영하고자 하였다.

  • PDF