• Title/Summary/Keyword: Fluid Measure

Search Result 473, Processing Time 0.021 seconds

A Study on the Measurement of Delivery Flow Ripple Generated by Hydraulic Axial Piston Pumps (유압용 액셜 피스톤 펌프의 유량맥동 계측에 관한 연구)

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.35-43
    • /
    • 1999
  • The paper describes an approach for measuring delivery flow ripple generated by oil hydraulic axial piston pumps. In order to reduce pressure ripple which cause to undesirable noise. vibration and fatigue in hydraulic systems it is indispensible measure a delivery flow ripple from pumps. Since the flow ripple measurement of flow pumps is independent of the dynamic characteristics of the connected hydraulic circuit the measurement of flow ripple is most suitable for pump fluid-borne noise rating. The measurement of flow ripple with high frequencies from axial piston pumps is made by applying the remote instantaneous flow rate measurement method which is based on the dynamic characteristics between pressure and flow rate in hydraulic pipeline. The measured flow ripple waveforms are influenced by the configuration of V-shaped triangular relief groove in the valve plate. It can be seen that the appropriate relief groove in valve plate reduces the pressure and flow ripple amplitude and frequency spectrum for high harmonics.

  • PDF

A Novel Viscosity Measurement Technique Using a Falling Ball Viscometer with a High-speed Camera

  • Jo, Won-Jin;Pak, Bock-Choon;Lee, Dong-Hwan
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • This study introduces a new approach to a falling ball viscometer by using a high speed motion camera to measure the viscosity of both Newtonian and non-Newtonian fluids from the velocity-time data. This method involves capturing continuous photographs of the entire falling motion of the ball as the ball accelerates from the rest to the terminal velocity state. The velocity of a falling ball was determined from the distance traversed by the ball by examining video tape frame by frame using the marked graduations on the surface of the cylinder. Each frame was pre-set at 0.01. Glycerin 74% was used for Newtonian solution, while aqueous solutions of Polyacrylamide and Carboxymethyl Cellulose were for non-Newtonian solutions. The experimental viscosity data were in good agreements with the results obtained from a rotating Brookfield viscometer.

Characteristics of Exit Flow and Performance of a Turbopump Inducer (터보펌프 인듀서의 출구 유동 및 성능 특성)

  • Hong, Soon-Sam;Koo, Hyun-Chul;Cha, Bong-Jun;Kim, Jin-han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.38-44
    • /
    • 2003
  • Flow field downstream of an inducer was measured to see the flow and performance characteristics of a turbopump inducer. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow - without interaction of the inducer and the volute. A conventional 3-hole probe was used to measure the flow. At inducer exit, axial component of absolute velocity decreased on hub region with decrease in flow rate. Tangential velocity component, static pressure, and total pressure increased from hub to tip. Relative flow angle from tangential direction was a little higher than outlet blade angle at flow coefficient ${\phi}=0.087$ and 0.073. Dynamic pressure was $53\%$ of the mean total pressure at inducer exit at ${\phi}=0.073$.

Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor by Using Impact Test (임팩트 테스트를 이용한 초고속 회전체용 공기 포일 베어링의 동특성 계수 측정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • MTG(Micro turbine generator) operating at 400,000 rpm is under development and the impact test rig to measure the dynamic stiffness and damping coefficient of air foil bearing for high speed rotor is presented in this study. The stiffness and damping coefficient of air foil bearing depending on the rotational speed can be measured easily and effectively by using the simple configuration of impact test rig which is composed of air gun, gap sensors and high speed motor. The estimation results of stiffness and dampling coefficient using least square estimation method is presented as well.

A Study for measuring the Intial Permeability of Soft-Ferrite Powder by Using Differential Transformer Coil (차동트랜스 코일을 이용한 Soft-Ferrite 분말의 초투자율측정에 관한 연구)

  • Jun, Hong-Bae;Heo, Jin;Kim, Chul-Han;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.68-71
    • /
    • 2000
  • In this study, A set-up for measuring a initial permeability of soft-ferrite powder was developed with a differential transformer coil. To measure a initial permeability of magnetic powder is cumbersome since there are not any measuring equipment and method. A magnetic powder is currently used for a magnetic fluid and microwave absorber materials, and the initial permeability of the magnetic powders is very important to be evaluated a powder for some applications.

  • PDF

Characteristics of Piezoelectric Sensor for Fluid Impact Pressure (유체 충격 압력 측정용 압전 센서 특징)

  • Choi, Young-Myung;Kim, Hyun-Yi;Park, Jun-Soo;Kwon, Sun-Hong;Kim, Dong-Jean
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.17-22
    • /
    • 2009
  • This study presents an investigation of the characteristics of piezoelectric sensors whose main utilization is to measure impact pressure. The piezoelectric sensors were tested from several points of view. Their characteristics were investigated for repeatability, the effect of the diameter, temperature effect, water purity, flush mounting, and AC and DC coupling. Out of these, it was revealed that the temperature effect is very significant. The characteristics of the AC and DC coupling are also very important in understanding the time history of the impact pressure.

An Experimental Study on Structure of Air-assist Spray with Air Entrainment (공기유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, H.C.;Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The effect of air entrainment in twin-fluid spray structure is investigated experimentally by varing the amount of itemizing air. The air entrainment is expected to affect on droplet size and velocity, droplet number density, turbulent kinetic energy and vorticity. PDA(Phase Doppler Anemometer) and PIV(Particle Image Velocimetry) system are used to measure those important factors in analyzing spray structure. The results show that spray structure consists of three distinctive regions ; the atomizing region near nozzle, characterizing strong convective effect, the central core region where droplets are accelerated, and the spray sheath region where droplets are decelerated due to air entrainment. The local air entrainment rate is largest near nozzle, characterizing strong turbulent kinetic energy and vorticity but deceases along axial distance.

  • PDF

Axial Turbine Performance Evaluation in a Rotating Facility (회전 환경에서의 축류 터빈 성능평가)

  • Yoon, Yong-Sang;Song, Seung-Jin;Kim, Hong-Won;Cho, Sung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.46-52
    • /
    • 2001
  • This paper describes a turbine test program conducted at Seoul National University(SNU). To measure blades' aerodynamic performance, either linear(2-Dimensional) or annular(3-Dimensional) cascades are often used. However, neither cascade can consider effects such as those due to rotation or rotor-stator interaction. Therefore, a rotating test facility for axial turbines has been designed and built at SNU, and its description is given in this paper. The results from an axial turbine performance test are presented. At the design point, the measured efficiency agrees with the efficiency predicted by a meanline analysis. At off design points, however, the measured and predicted efficiencies diverge. The most likely cause is hypothesized to be the inaccuracy of correlations used in the meanline analysis at off design points.

  • PDF

Development and Uncertainty Evaluation of Piston Prover (피스톤 푸루버 개발 및 불확도 평가)

  • Choi, Hae-Man;Park, Kyung-Am
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.47-53
    • /
    • 2003
  • The piston prover was developed and the flow measurement uncertainty of this piston prover was evaluated according to ISO/IEC 17025. The laser interferometer, instead of the optical sensors used in the typical provers, was employed in this prover to measure accurately the testing time and the moved distance of the piston. Uncertainty was calculated with evaluation of various uncertainty factors affecting flow measurement. The expanded uncertainty (U) of the piston prover was $1.3{\times}10^{-3}$ (at the confidence level of $95\%$). This evaluation example will be useful in the flow measurement uncertainty determination of other gas flow measurement system.

A Study on measuring the Initial Permeability of Magnetic Powder considered Demagnetizing factors (반자장계수를 고려한 자성분말의 초투자율 측정에 관한 연구)

  • Jun, Hong-Bae;Heo, Jin;Kim, Chul-Han;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.86-90
    • /
    • 2000
  • In this study, A equipment for measuring the initial permeability of soft-ferrite powder was developed by using a differential transformer coil, and was investigated demagnetizing factors. To measure the initial permeability of magnetic ceramic powder is cumbersome since there are not any measuring equipment and method. Magnetic powder is currently used for a magnetic fluid and microwave absorber materials, and the initial permeability of the magnetic powder is very important to be evaluated a powder for some applications.

  • PDF