• Title/Summary/Keyword: Fluid Management

Search Result 517, Processing Time 0.026 seconds

Coconut Oil Extract Mitigates Testicular Injury Following Adjuvant Treatment with Antiretroviral Drugs

  • Ogedengbe, Oluwatosin O;Jegede, Ayoola I;Onanuga, Ismail O;Offor, Ugochukwu;Naidu, Edwin CS;Peter, Aniekan I;Azu, Onyemaechi O
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.317-325
    • /
    • 2016
  • Increased access to highly active antiretroviral therapy (HAART) has made the management of drug toxicities an increasingly crucial component of HIV. This study investigated the effects of adjuvant use of coconut oil and HAART on testicular morphology and seminal parameters in Sprague-Dawley rats. Twelve adult male Sprague-Dawley rats, weighing 153~169 g were distributed into four groups (A-D) and treated as follows: A served as control (distilled water); B (HAART cocktail-Zidovudine, Lamivudine and Nevirapine); C (HAART + Virgin coconut oil 10 mL/kg) and D (Virgin coconut oil 10 mL/kg). After 56 days of treatment, animals were killed and laparotomy to exercise the epididymis for seminal fluid analyses done whilst testicular tissues were processed for histo-morphometric studies. Result showed a significant decline in sperm motility (P < 0.05) and count (P < 0.0001) in HAART-treated animals while there was insignificant changes in other parameters in groups C and D except count that was reduced (P < 0.0001) when compared with controls. Histomorphological studies showed HAART caused disorders in seminiferous tubular architecture with significant (P < 0.01) decline in epithelial height closely mirrored by extensive reticulin framework and positive PAS cells. Adjuvant Virgin coconut oil + HAART resulted in significant decrease in seminiferous tubular diameter (P < 0.05), but other morphometric and histological parameters were similar to control or Virgin coconut oil alone (which showed normal histoarchitecture levels). While derangements in testicular and seminal fluid parameters occurred following HAART, adjuvant treatment with Virgin coconut oil restored the distortions emanating thereof.

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Analysis of Empty Sella Secondary to the Brain Tumors

  • Kim, Ji-Hun;Ko, Jung-Ho;Kim, Hyun-Woo;Ha, Ho-Gyun;Jung, Chul-Ku
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.355-359
    • /
    • 2009
  • Objective : The definition of empty sella syndrome is 'an anatomical entity in which the pituitary fossa is partially or completely filled with cerebrospinal fluid, while the pituitary gland is compressed against the posterior rim of the fossa'. Reports of this entities relating to the brain tumors not situated in the pituitary fossa, have rarely been reported. Methods : In order to analyze the incidence and relationship of empty sella in patients having brain tumors, the authors reviewed preoperative magnetic resonance imaging (MRI) of 72 patients with brain tumor regardless of pathology except the pituitary tumors. The patients were operated in single institute by one surgeon. There were 25 males and 47 females and mean patient age was 53 years old (range from 5 years to 84 years). Tumor volume was ranged from 2 cc to 238 cc. Results : The overall incidence of empty sella was positive in 57/72 cases (79.2%). Sorted by the pathology, empty sella was highest in meningioma (88.9%, p=0.042). The empty sella was correlated with patient's increasing age (p=0.003) and increasing tumor volume (p=0.016). Conclusion : Careful review of brain MRI with periodic follow up is necessary for the detection of secondary empty sella in patients with brain tumors. In patients with confirmed empty sella, follow up is mandatory for the management of hypopituitarism, cerebrospinal fluid (CSF) rhinorrhea, visual disturbance and increased intracranial pressure.

Smart Card and Dynamic ID Based Electric Vehicle User Authentication Scheme (스마트카드 및 동적 ID 기반 전기 자동차 사용자 인증 스킴)

  • Jung, Su-Young;Kwak, Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.141-148
    • /
    • 2013
  • Smart grid can two-way communication using ICT(Information & Communication Technology). Also, smart grid can supply to dynamic power that grafted to electric vehicle can activate to electric vehicle charging infrastructure and used to storage battery of home. Storage battery of home can resale to power provider. These electric vehicle charging infrastructure locate fixed on home, apartment, building, etc charging infrastructure that used fluid on user. If don't authentication for user of fluid user use to charging infrastructure, electric charging service can occurred to illegal use, electric charges and leakgage of electric information. In this paper, we propose smartcard and dynamic ID based user authentication scheme for used secure to electric vehicle service in smart grid environment.

Experimental and Numerical Assessment of Liquid Water Exhaust Performance of Flow Channels in PEM Fuel Cells (고분자 전해질 연료전지 유로의 수분배출 특성의 실험 및 해석적 평가)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • Polymer electrolyte membrane (PEM) fuel cells are a promising technology for short-term power generation required in residential and automobile applications. Proper management of water has been found to be essential for improving the performance and durability of PEM fuel cells. This study investigated the liquid water exhaust capabilities of various flow channels having different geometries and surface properties. Three-pass serpentine flow fields were prepared by patterning channels of 1 mm or 2 mm width onto hydrophilic Acrylic plates or hydrophobic Teflon plates, and the behaviors of liquid water in those flow channels were experimentally visualized. Computational fluid dynamics (CFD) simulations were also conducted to quantitatively assess the liquid water exhaust capabilities of flow channels for PEM fuel cells. Numerical results showed that hydrophobic flow channels have better liquid water exhaust capabilities than hydrophilic flow channels. Flow channels with curved corners showed less droplet stagnation than the channels with sharp corners. It was also found that a smaller width is desirable for hydrophobic flow channels while a larger width is desirable for hydrophilic ones. The above results were explained as being due to the different droplet morphologies in hydrophobic and hydrophilic channels.

Computational Fluid Dynamics Study on Uniform Cooling of Polymer Electrolyte Membrane Fuel Cells by Parallel Multi-pass Serpentine Flow Fields (병렬 사형유로를 채택한 냉각판을 통한 고분자 전해질 연료전지의 균일 냉각에 대한 전산유체역학 해석 연구)

  • Yu, Seung-Ho;Baek, Seung-Man;Nam, Jin-Hyun;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.885-891
    • /
    • 2010
  • Thermal management is important for enhancing the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) and is taken into account in the design of PEMFCs. In general, cooling pates with circulating liquid coolant (water) are inserted between several unit cells to exhaust the reaction heat from PEMFCs. In this study, computational fluid dynamics (CFD) simulations were performed to characterize the uniform cooling performance of parallel multipass serpentine flow fields (MPSFFs) that were used as coolant flow channels in PEMFCs. The cooling performances of conventional serpentine and parallel flow fields were also evaluated for the purpose of comparison. The CFD results showed that the use of parallel MPSFFs can help reduce the temperature nonuniformity, and thus, can favorably enhance the performance and durability of PEMFCs.

An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling (선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구)

  • Yoon, Seoktae;Jung, Hoseok;Cho, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.

A Proteomic Approach for Quantitative Analysis of Calcitonin Gene-related Peptides in the Cerebrospinal Fluid Obtained from a Rat Model of Chronic Neuropathic Pain (만성 신경병성 통증이 유발된 쥐의 뇌척수액에서 단백체학을 이용한 Calcitonin Gene-related Peptides의 정량분석)

  • Kim, Dong Hee;Hong, Sung Ho
    • The Korean Journal of Pain
    • /
    • v.21 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • Background: This study was conducted to quantitatively analyze proteins associated with the calcitonin gene-related peptide (CGRP) in cerebrospinal fluid (CSF) that was obtained from a rat model of chronic neuropathic pain following administration of intrathecal $CGRP_{8-37}$. Methods: Male Sprague-Dawley rats (100-150 g, 5-6 wks) were divided into two groups, sham controls and neuropathic pain models. At the time of operation for neuropathic pain model, an intrathecal catheter was threaded through the intrathecal space. At 1 or 2 wks after the operation (maximum pain state), a test dose of 1, 5, 10, or 50 nM of $CGRP_{8-37}$ was injected into the intrathecal catheter and the CSF was then aspirated. Conventional proteomics to evaluate the CSF were then performed using high resolution 2-D, gel electrophoresis followed by computational image analysis and protein identification by mass spectrometry. Results: Treatment with $CGRP_{8-37}$ effectively alleviated mechanical allodynia in a dose dependent manner. The most effective response was obtained when a dose of 50 nM was administered, but significant differences were obtained following administration of only 5 nM $CGRP_{8-37}$. Furthermore, the results of the proteomic analysis were consistent with the experimental results. Specially we detected 30 differentially expressed spots in 7 images when 2-D gel electrophoresis was conducted. The intensity of 6 of these spots (spot number: 20 and 26-30) was found decrease the $CGRP_{8-37}$ dose increased; therefore, these spots were evaluated by mass spectrometry. This analysis identified 2 different proteins, CGRP (spot numbers: 26-30) and neurotensin-related peptide (spot number: 20). Conclusions: The results of this study suggest that CGRP plays a role in chronic central neuropathic pain and is a major target of chronic neuropathic pain management.

Association Between Vertebrobasilar Insufficiency and Cervicogenic Headache: Hypothetical Approach Towards Etiopathogenesis of Headache

  • Kaur, Aninditya;Rakesh, N.;Reddy, Sujatha S.;Thomas, Nithin;Nagi, Ravleen;Patil, Deepa Jatti
    • Journal of Oral Medicine and Pain
    • /
    • v.45 no.4
    • /
    • pp.97-109
    • /
    • 2020
  • Purpose: Cervicogenic headache (CGH) is pain referred to the head/ face from the structures in vicinity of upper cervical spinal nerves via trigeminocervical pathway. Ponticulus Posticus (PP) and Elongated Styloid Process (ESP) are anatomical structures that cause compression of vasculature present around upper cervical nerve plexus. Recently, computational fluid dynamics (CFD) has shown to play an essential role in identification of these high-pressure zones in the brain. The aim of this research is to study the association of ESP and PP in patients with CGH and to develop a hypothesis by CFD to analyse vertebrobasilar insufficiency as a contributing factor in occurrence of CGH. Methods: Retrospective analysis of 4500 full skull CBCT scans was done for the presence of partial or complete PP and length of Styloid Process (SP). Research was divided into two phases; In first Preliminary Phase, 150 scans that showed the presence of PP and ESP were analysed, and only 134 patients gave consent to fill the questionnaire containing 96 question items pertaining to symptoms associated with CGH. In the second phase, simulation of Vertebral and Carotid Artery was done using Fluent 14.5 Software and by CFD, pressure distribution on arteries was obtained that helped to identify high pressure regions. Results: Both PP and ESP showed a statistically significant association with CGH (p<0.001). By CFD analysis, both steady and transient phases of simulation showed drop in pressure due to constriction of internal carotid and vertebral artery by ESP and PP respectively and were found to decrease the volume of blood reaching the brain, 0.12 /0.13 mL and 0.06 mL respectively. Conclusions: Our analysis proves ESP and PP as contributing factors towards CGH. Hence for proper diagnosis and management of headache disorders, clinicians should have adequate knowledge about these anatomical structures and their resulting clinical symptoms.

Risk factors associated with repeated epidural blood patches using autologous blood

  • Oh, Ah Ran;Park, Jungchan;Jeong, Ji Seon;Lee, Jin Young;Choi, Ji Won;Kim, Hara;Sim, Woo Seog
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.224-230
    • /
    • 2022
  • Background: An epidural blood patch (EBP) is a procedure to treat intracranial hypotension that does not respond to conservative treatment. EBPs are commonly repeated when the symptoms persist. In this study, we used a large single-center retrospective cohort and evaluated the factors associated with repeated EBPs. Methods: From January 2010 to December 2020, a total of 596 patients were treated with EBPs for intracranial hypotension. We evaluated the factors associated with repeated EBPs in the entire population, in patients with spontaneous intracranial hypotension (SIH), and in those with available myelographies. Results: In a total of 596 patients, 125 (21.1%) patients required repeated EBPs, and 96/278 (34.5%) in SIH and 29/314 (9.2%) in iatrogenic population. In patients with SIH, international normalized ratio (INR) and cerebrospinal fluid (CSF) leakage on myelographies consistently exhibited significant associations (odds ratio [OR], 1.38; 95% confidence interval [CI], 1.02-1.87; P = 0.043 and OR, 2.18; 95% CI, 1.28-3.69; P = 0.004). In patients with iatrogenic injury, INR and CSF leakage on myelogram did not show difference in repeated EBPs. Conclusions: Repeated EBPs may be more frequently required in patients with SIH. Prolonged INR and CSF leakage were associated with repeated EBPs in patient with SIH. Further studies are needed to determine factors associated with repeated EBP requirements.