• Title/Summary/Keyword: Fluid Force Reduction

Search Result 97, Processing Time 0.023 seconds

A Study on the Reduction Analysis of the Response of the Mega-Float Offshore Structure in Regular Wave (1st Report) (대형 부류해양구조물의 파낭중 응답의 저감해석에 관한 연구(제1보))

  • 박성현;박석주
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.85-95
    • /
    • 2000
  • In the country where the population concentrates in the metropolis with the narrow land, development of the ocean space is necessary. Recently, mega-float offshore structure has been studied as one of the effective utilization of the ocean space. And very large floating structures are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave external force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. The validity of analysis method is verified in comparison with the experimental result in the Japan Ministry of Transport Ship Research Institution. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Flutter performance of box girders with different wind fairings at large angles of attack

  • Tang, Haojun;Zhang, Hang;Mo, Wei;Li, Yongle
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.509-520
    • /
    • 2021
  • The streamlined box is a common type of girders for long-span suspension bridges. Spanning deep canyons, long-span bridges are frequently attacked by strong winds with large angles of attack. In this situation, the flow field around the streamlined box changes significantly, leading to reduction of the flutter performance. The wind fairings have different effects on the flutter performance. Therefore, this study examines the flutter performance of box girders with different wind fairings at large angles of attack. Computational fluid dynamics (CFD) simulations were carried out to extract the flutter derivatives, and the critical flutter state of a long-span bridge was determined. Further comparisons of the wind fairings were investigated by a rapid method which is related to the input energy by the aerodynamic force. The results show that a reasonable type of wind fairings could improve the flutter performance of long-span bridges at large angles of attack. For the torsional flutter instability, the wind fairings weaken the adverse effect of the vortex attaching to the girder, and a sharper one could achieve a better result. According to the input energies on the girder with different wind fairings, the symmetrical wind fairings are more beneficial to the flutter performance

Lubrication Characteristics of Micro-Textured Slider Bearing: Effect of Dimple Density (Micro-Texturing한 Slider Bearing의 윤활특성 : 딤플 밀도의 영향)

  • Park, Tae Jo;Lee, Joon Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.437-442
    • /
    • 2013
  • In recent times, surface texturing methods have been widely applied to reduce friction and improve the reliability of machine components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, a numerical analysis is carried out to investigate the effect of uniformly spaced hemispherical dimples on the lubrication characteristics of a slider bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The pressure distributions, load capacity, leakage flowrate, and friction force are strongly affected by the dimple diameter and the number of dimples. In particular, the load capacity and friction force decrease linearly with the dimple density whereas the leakage increases. These results can be used for designing the optimum dimple characteristics in order to improve the lubrication performance of slider bearings, for which further studies are required.

Investigation of flowfield characteristics of a square prism having a front triangular prism by PIV (PIV에 의한 정면에 삼각주를 가진 정방형주 주위의 유동장 특성분석)

  • Ro, Ki-Deok;Kim, Jae-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.205-209
    • /
    • 2016
  • The flowfield characteristics of a square prism having a small triangular prism at the upstream side were investigated by visualizing the flow field using PIV. The ratio of the width of the triangular prism to that of the square prism and the gap ratios between the square and triangular prisms were selected as the experimental parameters. The results are summarized as follows. The Strouhal number measured on the wake side of the square prism, which had the same characteristics as the drag reduction rate, increased, and then decreased with the gap ratio for the same width ratio. For a square prism having a small triangular prism, the stagnation regions were represented at the upstream and downstream sides of the square prism. The size of the stagnation region increased with the width ratio at the upstream side of the square prism, and decreased at the downstream side.

Analysis of Aerodynamic Noise Generation from Pantograph Using Panhead Models of Simple-Geometry and Its Reduction (팬헤드의 단순 형상 모델을 이용한 판토그라프 공력소음 발생 특성 분석 및 저감 방안)

  • Yi, Suk-Keun;Yang, Won-Seok;Koh, Hyo-In;Park, Junhong
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.531-536
    • /
    • 2012
  • This study presents a result on aero-acoustic characteristics of pantograph panheads. To analyze the fluid flow around the panhead and resulting sound radiation, simple models of panhead were used in the numerical simulations called Lattice-Boltzmann method. The simulation results were verified using the wind tunnel test. The main aerodynamic noise was generated from the vortex shedding which is characterized by the Strouhal number, flow speed and geometry. The reduction in the radiated noise with simultaneously achieving increased lifting force was implemented for the simple rectangular geometry used in this study. Also, it was shown that the radiated sound power was significantly reduced by minimizing vortex shedding using through-holes or streamline shapes.

Effect of different air-drying time on the microleakage of single-step self-etch adhesives

  • Moosavi, Horieh;Forghani, Maryam;Managhebi, Esmatsadat
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.2
    • /
    • pp.73-78
    • /
    • 2013
  • Objectives: This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods: Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO), Clearfil $S^3$ Bond (CSB), Bond Force (BF). Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (${\alpha}$ = 0.05). Results: The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001). The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001). Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001). Conclusions: Increasing in air-drying time of adhesive layer in one-step selfetch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives.

The Flow Control by a Horizontal Splitter Plate for a Square Prism near a Wall (벽면에 근처에 놓인 정방형주의 수평 분리판에 의한 유동 제어)

  • Ro, Ki-Deok;Lee, Sang-Jun;Lee, Gyeong-Yun;Jang, Jae-Dong;Jung, Yong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.625-631
    • /
    • 2011
  • The passive control of fluid force acting on a square prism near a plane wall was studied by attaching horizontal splitter plate on the corner of the prism. The width of the splitter plate was 10% of the square width. The experiments were performed by measuring of fluid force on the prism and by visualization of the flow field using PIV. The experimental parameters were the attaching position and the space ratios G/B between the prism and wall. The flow between the prism and wall was remarkable and Karman vortex in the wake of the prism was considerable in the space ratio over 0.4. The point of inflection of average lift coefficient and Strouhal number on the prism were represented at the space ratio G/B=0.4 for the prototype prism and G/B=0.6 for the prism having horizontal splitter plate. The drag of the prism was reduced average 4.5% with the space ratios by attaching the horizontal splitter plate at the rear and lower corner on the prism. In this case, the size of the separated region on the upside of the prism was smaller than that of prism without the splitter plate.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Flowfield Experiments for a Circular Cylinder Having a Front Triangular Prism (정면에 정삼각주를 가진 원주의 유동장 특성실험)

  • Ro, Ki Deok;Han, Sang Yun;Ju, Hyung Gwan;Kang, Ja Un;Bae, Tae Beom;Noh, Woo Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.751-759
    • /
    • 2015
  • In this study, we investigate the Characteristics of the flowfields of a circular cylinder having a small triangular prism at the upstream side. We measure the fluid force on the circular cylinder and obtain a visualization of the flow fields using particle image velocimetry (PIV). The experimental parameters employed were the width ratios (H/B = 0.2~0.6) of the triangular prisms to the circular cylinder's diameter, and the gap ratios (G/B = 0~3) between the circular cylinder and the triangular prism. We observed that the drag reduction rate and Strouhal number of the circular cylinder increased and then decreased with G/B in the case of the same H/B. The drag reduction rate increased with H/B in the case of the same G/B. In the case where the circular cylinder had a small triangular prism, the stagnation regions were represented in the upstream and downstream sides of the circular cylinder.

Characteristics of Flowfield of a Circular Cylinder Having a Detached Splitter Plate with High Reynolds Number (고 레이놀즈 수에서 분리된 분할판을 가진 원주의 유동장 특성)

  • Ro, Ki Deok;Lee, Han Gyun;Lee, Jong Ho;Lee, Jeong Min;Shin, Jin Ho;Cheon, Kang Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.373-381
    • /
    • 2016
  • In this study, we investigate the characteristics of the drag reduction of a circular cylinder having a detached splitter plate at the wake side. We measure the fluid force on a circular cylinder and visualize the field using particle image velocimetry (PIV) with a high Reynolds number, Re = 10,000. The experimental paraeters used were the width ratios (H/B = 0.5~1.5) of splitters to the prism width and the gap ratios (G/B = 0~2) between the prism and the splitter plate. The drag-reduction rate of the circular cylinder increased with H/B in the case of the same G/B, and it increased and then decreased with G/B in the case of the same H/B. The vortices of the opposite direction on the upper and lower sides of the detached splitter plate were generated by installing the plate. Reverse flow was caused by the vortices at the wake region of the circular cylinder, and the drag of the circular cylinder was decreased by the reverse flow.