• Title/Summary/Keyword: Fluid Force Moment

Search Result 84, Processing Time 0.029 seconds

Numerical investigation of wind interference effect on twin C-shaped tall buildings

  • Himanshoo Verma;R. S. Sonparote
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.425-444
    • /
    • 2023
  • This study is to investigate the effect of interference between two C-shaped high-rise buildings by computational fluid dynamics (CFD), focusing on the variation of the local pressure coefficient (CP) and the mean pressure coefficient (CPMEAN). Sixteen building position cases are considered for the present study. These cases were based on the position and height of the interference building (IB). The pressure coefficient (CP) is calculated on the principal building (PB) and is compared with an isolated building identical in shape and size. The interference effect on PB has also been presented in reference for the interference factor (IF). According to the findings, the maximum force coefficient on the PB is 0.971 and it is 10.97% more than the isolated PB when IB is located at position 2b (two times the width of the building), and the interfering height of 13H/15 mm. The moment coefficient on PB is 1.27, which is 27.36% less than the isolated case in which IB pushed 2b to 3b in the y direction with 750 mm height. In most of the cases, because of the shielding effect of the IB, the value of force coefficient (CF) on PB has been reduced. On the face of the PB, there are also considerable differences in the mean pressure coefficient CPMEAN. When IB was positioned at a location of 2b in Y direction and an interfering height of 13H/15 mm, the maximum CPMEAN (1.58) was observed on the leeward face of PB.

A Study on the Effect of Wind Load to an Articulated type Container Crane by Fluid-Structural Coupled Field Analysis (유동-구조 연성해석기법을 이용한 풍하중이 관절형 컨테이너 크레인에 미치는 영향에 관한 연구)

  • An, Tae-Won;Lee, Seong-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • This study was carried out to the effect of wind load on the structural stability of an articulated type container crane according to the wind direction assuming that 75m/s wind velocity is applied on a container crane using FSI(fluid-structural interaction). To consider fluid phenomenon around the container crane, the wind load was derived by the computation fluid dynamic, and it applied to the FSI which can guarantee an accuracy and a reliability in the design stage for wind resistant structural stability to minimize the damage due to high wind load applied in a container crane with a 'ㄱ' type articulated boom which used in the total height restriction region. Following from this, the reaction force on the each support of a container crane was suggested. ANSYS ICEM CFD 10.0 and ANSYS CFX 10.0 used for computation fluid dynamic, and the ANSYS Workbench 11.0 was used for the fluid-structural interaction.

COMPUTATIONAL FLUID DYNAMICS OF THE LOW-SPEED LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR BWB TYPE UCAV CONFIGURATION (연속일체형 날개-동체 타입 UCAV 형상의 저속 종방향 공력특성에 대한 전산유동해석)

  • Park, S.H.;Chang, K.;Shim, H.J.;Sheen, D.J.;Park, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.48-54
    • /
    • 2016
  • In the present work, numerical simulations were conducted on the scaled model of the BWB type UCAV in the subsonic region using ANSYS FLUENT V15. The prediction method was validated through comparison with experimental results and the effect of the twisted wing was investigated. To consider the transitional flow phenomenon, ${\gamma}$ transition model based on SST model was adopted. The coefficients of lift, drag and pitching moment were compared with experimental results and the pressure distribution and streamlines were investigated. The twisted wing decreases the lift force but increases lift-to-drag ratio through delay of stall and leading edge vortex's movement to the front, also the non-linearity of the pitching moment is decreased.

Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter (배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과)

  • 조진래;김민정;이상영;허진욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • The dynamic load caused by sloshing of internal fluid severely affects the structural and control stabilities of cylindrical liquid containers accelerating vertically. If the sloshing frequency of fluid is near the frequency of control system or the tank structure, large dynamic force and moment act on launching vehicles. For the suppression of such dynamic effects, generally flexible ring-type baffles are employed. In this paper, we perform the numerical analysis to evaluate the dynamic suppression effects of baffle. The parametric analysis is performed with respect to the baffle inner-hole diameter and two different baffle spacing types : equal spacing with respect to the tank and one with respect to the fluid height. The ALE (arbitrary Lagrangin-Eulerian) numerical method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and elastic structure.

On Study of the Effects of External Forces on the Fish Farm Structure Due to Following Flows and Currents in Fully Operated Ship's Propeller (선박 프로펠러 후류 및 조류에 의해 발생한 힘이 가두리 양식장 구조물에 미치는 영향에 관한 연구)

  • Lee, Kwi-Joo;Ra, Young-Kon;Kim, Kyoung-Hwa;Ryu, Tae-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.245-250
    • /
    • 2002
  • This report describes the effects of following flaws due to ship's propeller on the fish farm structure when the ship's propeller is operated in full power. This study is applied an incompressible newtonian fluid theory, which is governed the Navier-Stokes equation. For the numerical solution, Neumann equation are applied as the boundary conditions. The result shows that the flow velocity near the fish farm is 1.0 m/sec. The actual measurement carries out by using propeller type velocimeter in order to measure the velocity of following flows and currents around the fish farm area. The result shows that the maximum velocity near the fish farm structure is 1.2 m/sec in depth of 1.5 m. This velocity is used for calculation of external force on the fish farm structure. The results of structural strength of the fish farm structures show that the actual maximum bending moment and bending stress are less than the damage strength of material. So the fish farm structure is not affected by the following flows and currents of ship's propeller.

  • PDF

Study on the Viscous Roll Damping around Circular Cylinder Using Forced Oscillations (강제동요를 이용한 원형실린더 점성 롤댐핑 연구)

  • Yang, Seung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.71-76
    • /
    • 2017
  • The roll damping problem in the design of ships and offshore structures remains a challenge to many researchers due to the fluid viscosity and nonlinearity of the phenomenon itself. In this paper, the study on viscous roll damping of a circular cylinder was carried out using forced oscillations. The roll moment generated by forced oscillation using a torque sensor was measured for each forced oscillation period and compared with the empirical formula. Although the magnitude of the measured torque from the shear force was relatively small, the results were qualitatively similar to those obtained from the empirical formula, and showed good agreement with the quantitative results in some oscillation periods. In addition, the flow around the circular cylinder wall was observed closely through the PIV measurements. Owing to the fluid viscosity, a boundary layer was formed near the wall of the circular cylinder, and a minute wave was generated by periodical forced oscillations at the free surface through the PIV measurement. In this study, the suitability of the empirical formula for the roll moment caused by viscous roll damping was verified by model tests. The wave making phenomenon due to the fluid viscosity around the wall of a circular cylinder was testified by PIV measurements.

Analysis of Aerodynamic Characteristics for Guided Gliding Type Ammunition Using Computational Analysis and Wind Tunnel Test (전산해석 및 풍동시험을 이용한 유도형 활공탄약의 공력해석)

  • Bang, Jae Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • In this study aerodynamic characteristics of guided gliding type ammunition were investigated by using a computational analysis and wind tunnel test. Missile DATCOM, a semi-empirical method, and a FLUENT, a computational fluid dynamics analysis program, were used for computational analysis. For a guided gliding type ammunition, aerodynamic characteristics were investigated by calculating lift force, drag force, pitching moment and etc. Aerodynamic characteristics of guided gliding type ammunition are completely different from those of conventional ammunition. The results obtained from the computer analysis are similar to those obtained from the wind tunnel test. Although the pitch moment values obtained by the semi-empirical method were slightly different from the wind tunnel test results, the overall computer analysis results showed trends and values similar to the test results. In this study, aerodynamic characteristics of guided gliding type ammunition were identified and it found that semi-empirical method can be applied to analyze the aerodynamic characteristic in the initial design of guided gliding ammunition.

Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS (RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구)

  • Lee, Sungwook
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

Optimum Design of Viscous Fluid Damper for Reducing the Torsional Vibration of Propulsion Shaft System (추진축계 비틀림 진동 감쇠를 위한 점성 댐퍼의 최적 설계)

  • Park, Sang-Yun;Han, Kuk Hyun;Park, Ju-Min;Kwon, Sung Hun;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.606-613
    • /
    • 2015
  • In this study, the torsional vibration analysis for a marine propulsion system is carried out by using the transfer matrix method(TMM). The torsional moment produced by gas pressure and reciprocating inertia force may yield severe torsional vibration problem in the shaft system which results in a damage of engine system. There are several ways to control the torsional vibration problem at hand, firstly natural frequencies can be changed by adjusting shaft dimensions and/or inertia quantities, secondly firing order and crank arrangement are modified to reduce excitation force, and finally lower the vibration energy by adopting torsional vibration damper. In this paper, the viscous torsional vibration damper is used for reducing the torsional vibration stresses of shaft system and it is conformed that optimum model of the viscous damper can be determined by selecting the geometric design parameters of damper and silicon oil viscosity.