• 제목/요약/키워드: Fluid Flow System

검색결과 2,221건 처리시간 0.03초

CFD를 이용한 테일러 반응기의 유동 특성에 관한 수치적 연구 (Numerical Study on Fluid Flow Characteristics in Taylor Reactor using Computational Fluid Dynamics)

  • 이승호;심규환;전동협
    • 대한기계학회논문집B
    • /
    • 제40권1호
    • /
    • pp.9-19
    • /
    • 2016
  • 본 연구는 테일러 반응기내 각속도와 유입속도 변화에 따른 테일러 유동의 변화와 입자의 체류시간 변화를 전산수치해석 기법을 이용하여 알아보았다. 반응기내 유동은 각속도가 증가함에 따라 점점 불안정해지는 경향을 보였다. 유동은 레이놀즈 수의 증가에 따라 CCF, TVF, WVF, MWVF 영역으로 이동하게 되고 각 영역에서 상이한 유동특성을 보였다. 유입속도의 변화가 테일러 유동에 영향을 주는 것을 확인하였다. 각속도가 빠를수록, 그리고 유입속도가 느릴수록 입자의 체류시간과 표준편차는 증가하였다.

입자수송시스템 내 공기-입자 유동장의 압력손실 특성 해석 (Analysis of Pressure Drop Characteristics for the Air-Particle Flow in Powder Transport Piping System)

  • 이재근;구재현;권순홍
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.20-26
    • /
    • 2002
  • This study reports the analysis of the pressure drop characteristics for the air-particle flow in powder transport piping system. The pressure drop characteristics of air-particle flow in piping system is not well understood due to the complexity of particles motion mechanism. Particles or powders suspended in air flow cause the increase of the pressure drop and affect directly the transportation efficiency. In this study, the pressure drop in powder transport piping system with straight and curved pipes is analyzed for the interactions of air flow and particle motion. The total pressure drop increases with increasing of the pipe length, the mixture ratio, and the friction factor of particles due to the increasing friction loss by air and particles in a coal piping system. For the coal powders of $74{\mu}m$ size and powder-to-air mass mixture ratio of 0.667, the total pressure drop by the consideration of powders and air flow is $30\%$ higher than that of air flow only.

소결로 배기가스 재순환 시스템 내의 유체유동 특성 연구 (Fluid-flow Characteristics of Flue-gas-recirculation System in Sintering Plant)

  • 문찬희;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제16권2호
    • /
    • pp.7-15
    • /
    • 2018
  • The fluid-flow characteristics of flue-gas-recirculation (FGR) system can have a significant effect on system efficiency of a sintering plant. The flow characteristics in the system were investigated. A sintering plant with FGR system was modeled. Numerical visualization was performed and flow characteristics were analyzed. Characteristics of the flow distribution of the branch ducts, the inflow of air into the recirculating hood, and the flow in the hood were discussed. Based on the results three suggestions were proposed: (1) distribution of branch duct flowrate upstream, (2) installation of external air ducts in the hood, and (3) installation of baffles at the hood corners. The suggestions were tested numerical and experimental visualization methods. The suggestions were effective and confirmed to be applicable to the actual sinter plant.

환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화 (Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation)

  • 이상혁;권오준;허남건
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

왕복동식 수소압축기의 흡입통로내 작동유체 유동해석 (Numerical Analysis on the Working Fluid Flow of Suction-passage for Reciprocating Compressor)

  • 이경환;라흐만;심규진;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1201-1207
    • /
    • 2008
  • Numerical analysis information will be very useful to improve fluid system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas coming to the cylinder of a reciprocating compressor are presented in this paper. Suction-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement, such as reducing the varying flow parameters and flow reorientation should be done. Consequently, development of the better hydrogen compressing system will be achieved.

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계 (A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System)

  • 배석정;허형석;박정상;이홍열;김찬중
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

진공 이젝터 시스템의 유동 컨트롤 (Flow Control in the Vacuum-Ejector System)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.321-325
    • /
    • 2010
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and/or recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for altitude testing of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser. This paper aims at the improvement of ejector-diffuser performance by focusing attention on reducing exhaust back flow into the test chamber, since alteration of the backflow or recirculation pattern appears as one of the potential means of significantly improving low supersonic ejector-diffuser performance. The simplest backflow-reduction device was an orifice plate at the duct inlet, which would pass the jet and entrained fluid but impede the movement of fluid upstream along the wall. Results clearly showed that the performance of ejector-diffuser system was improved for certain a range of system pressure ratios, whereas the orifice plate was detrimental to the ejector performance for higher pressure ratios. It is also found that there is no change in the performance of diffuser with orifice at its inlet, in terms of its pressure recovery. Hence an appropriately sized orifice system should produce considerable improvement in the ejector-diffuser performance in the intended range of pressure ratios.

  • PDF

단순지지 송수관의 동특성에 미치는 이동질량의 영향 (Influence of a Moving Mass on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid)

  • 윤한익
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.135-140
    • /
    • 2001
  • A simply supported pipe conveying fluid and a moving mass upon it constitute a vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of a moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid low are considered within its critical values of the simply supported pipe without a moving mass upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. as the velocity of a moving mass increases, the deflection of midspan of a simply supported pipe conveying fluid is increased and the frequency of transverse vibration of the pipe is not varied. Increasing of the velocity of fluid flow makes the frequency of transverse vibration of the simply supported pipe conveying fluid decrease and the deflection of midspan of the pipe increase. The deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving mass and the velocities of a moving mass and fluid flow.

  • PDF

실험에 의한 직교류홴의 유량 및 소음 분석 (Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan)

  • 안철오;류호선
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF