• Title/Summary/Keyword: Fluid Film Pressure

Search Result 150, Processing Time 0.032 seconds

A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump (고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구)

  • Koh, Sung-Wi;Kim, Byung-Tak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

Study on the Fluid Film Thickness and Pressure of Elliptical Elastohydrodynamic Lubrication with Spin Effect for the Power Transmitting Contact in the Continuously Variable Transmission (무단 변속기의 동력전달 접촉에서 회전운동을 고려한 타원형상의 점접촉 탄성유체윤활연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.272-277
    • /
    • 2005
  • Continuously variable transmission (CVT) of toroidal type has a elliptical shape of contact zone under the elastohydrodynamic lubrication (EHL) condition, where the power is transmitted only by shearing the lubricant. Due to the small contact area of elliptical shape, the traction of the shear behaviors of lubricant over the contact zone is under extremely high contact pressure over 1.0GPa. During the power transmission by shearing the fluid, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spin. Among the movements, the spin effect that is the most undesirable contact behavior in transmitting the power frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of EHL with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

Film Cooling Modeling for Combustion and Heat Transfer within a Regeneratively Cooled Rocket Combustor (막냉각 모델을 이용한 재생냉각 연소기 성능/냉각 해석)

  • Kim, Seong-Ku;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.636-640
    • /
    • 2011
  • Film cooling technique has been applied to effectively reduce thermal load on liquid rocket combustion chambers by direct injection of a portion of propellant, which flows through the regeneratively cooling channels, into the chamber wall. This study developed a comprehensive model to quantitatively predict the effects of kerosene film cooling on propulsive performance and wall cooling at supercritical pressure conditions, and assessed the predictive capability against hot-firing tests of an actual combustor. The present model is expected to be utilized as a design and analysis tool to meet the conflicting requirements in terms of performance, cooling, pressure loss and weight.

  • PDF

Non-Newtonian thermal Effects in Elastohydrodynamic Lubrication between the Two Rolling Systems

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.87-88
    • /
    • 2002
  • To analyze complicated phenomena on the fluid hydrodynamic and the elastic deformation between sliding body surfaces, an analysis to the elastohydrodynamic lubrication of sliding contacts has been developed taking into account the thermal and non-Newtonian effects. The computational technique handled the simultaneous solution of the non-Newtonian hydrodynamic effects, elasticity, the load, the viscosity variation, and temperatures rise. The results included the lubricant pressure profile, film thickness, velocity, shear stress, and temperature distribution, and the sliding frictional force on the surface at various slip conditions. These factors showed a great influence on the behavior resulted in the film shape and pressure distribution. Especially, Non-Newtonian effects and temperature rise by the sliding friction force acted as important roles in the lubrication performance.

  • PDF

Flow characteristics at the Impeller Exit of a Centrifugal Pump (원심펌프의 회전차 출구 유동 특성)

  • Hong, Soon-Sam;Kang, Shin-Hyoulg
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.36-44
    • /
    • 2000
  • The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A hot-film probe and a high response pressure transducer are used to investigate the flow at impeller exit and vaneless diffuser region for design and off design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, design, and numerical analysis of pumps.

  • PDF

Theoretical Analysis of Lubrication for the Hermetic Scroll Compressor with Back-Pressure Chamber (배압실을 갖는 밀폐형 스크롤 압축기의 윤활 특성에 관한 이론적 해석)

  • 심현해;김광호;이홍원;소순갑
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1994
  • Oil flow pass of hermetic scroll compressor with back pressure chamber was described. Dynamic analysis was preceded in order to obtain the loads on the lubricating contacts. The mobility method of dynamically loaded journal bearings was applied to the crank jornal bearing and lower main bearing, and they could be designed to operate under fluid film lubrication. From the consideration of their film thicknesses and oil flow rates, optimal bearing clearances or other bearing dimensions could be assessed. The major friction loss was calculated to be from the axial force between the two scrolls. Therefore, it was suggested that the designers should be careful to reduce the over-turning moment on the orbiting scroll.

Development of a Shock Absorber with an Orifice Sensitive to Velocity (속도 감응형 가변 오리피스를 갖는 쇽업저버 개발)

  • Moon, Sahyun;Kim, Ock Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.447-451
    • /
    • 2013
  • In this study, a shock absorber whose orifice area changes according to the oil pressure inside the absorber is developed. The orifice widens and narrows when the oil pressure is high and low, respectively; thus, the orifice area changes according to the oil pressure, in other words, according to the extension/compression velocity. It is well known that the damping force can be expressed as $C{\cdot}v^{\alpha}$. For fluid film damping, the force is proportional to velocity, i.e., ${\alpha}=1$, and for orifice damping, it is proportional to the square of velocity, i.e., ${\alpha}=2$. The shock absorber proposed in this paper can exhibit different relationships between the damping force and velocity because the orifice area changes according to the induced oil pressure. The motivation of this study is to develop a method for designing a shock absorber with desired values of C and ${\alpha}$ which is not just 1 or 2. Theoretical and experimental studies have been conducted to verify the damping characteristics of the shock absorber. The effect of some major design parameters on damping characteristics has been also examined to relate the design parameters to the damping characteristics.

A Study on Lubrication Characteristic of Slipper Hydrostatic Bearing in Hydraulic Piston Pump (유압 피스톤 펌프의 슬리퍼 정압베어링에 관한 윤활특성 연구)

  • Jung, J.Y.;Cho, I.S.;Baek, I.H.;Song, K.K.;Oh, S.H.;Jung, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The leakage generated from the clearance between the cylinder bore and the piston is one of the most serious problems in the hydraulic piston pump, and it even results in terrible decrease of the volume efficiency at a great velocity and high pressure. In this paper, the lubrication characteristic of the hydrostatic slipper bearing equipped in the hydraulic piston pump has been worked out by experimentation with three model bearings of different shape. Preparatory to this, not only the three models of piston-slipper were designed, but the corresponding experimental apparatus were also manufactured. As a result, it was verified that, according to the supply pressure, the hydrostatic bearing part of the slipper is severely affected by the pocket pressure, land pressure, oil film thickness, and leakage flow.

  • PDF

Instability of Nanoscale Thin Film;a Molecular Dynamics Study (분자동역학 전산모사를 이용한 박막의 불안정성 및 나노 구조물 형성에 관한 연구)

  • Han, Min-Sub;Lee, Joon-Sik;Park, Seung-Ho;Choi, Young-Ki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.228-232
    • /
    • 2003
  • It has recently been shown that the instability of thin film of a nanoscale can be used in the processes of building nano-size structures, which have potential practical importance in nanotechnology. Molecular dynamics simulation is conducted to probe the thin fluid film of a nano-size and its dynamic behavior during destabilization and structure formation. Non-continuum characteristics are shown in the properties like pressure tensor, viscosity, and thermal conductivity. The thermocapillary force induces a slow growth of long waves in the scale considered. A long-range interaction with the solid wall induces vertical structures, whose formation time and space between neighbors are proportional to the strength of the interaction.

  • PDF

Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD (CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구)

  • Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

  • PDF