• 제목/요약/키워드: Fluid Dynamics Performance

검색결과 952건 처리시간 0.033초

Off-design performance evaluation of multistage axial gas turbines for a closed Brayton cycle of sodium-cooled fast reactor

  • Jae Hyun Choi;Jung Yoon;Sungkun Chung;Namhyeong Kim;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2697-2711
    • /
    • 2023
  • In this study, the validity of reducing the number of gas turbine stages designed for a nitrogen Brayton cycle coupled to a sodium-cooled fast reactor was assessed. The turbine performance was evaluated through computational fluid dynamics (CFD) simulations under different off-design conditions controlled by a reduced flow rate and reduced rotational speed. Two different multistage gas turbines designed to extract almost the same specific work were selected: two- and three-stage turbines (mid-span stage loading coefficient: 1.23 and 1.0, respectively). Real gas properties were considered in the CFD simulation in accordance with the Peng-Robinson's equation of state. According to the CFD results, the off-design performance of the two-stage turbine is comparable to that of the three-stage turbine. Moreover, compared to the three-stage turbine, the two-stage turbine generates less entropy across the shock wave. The results indicate that under both design and off-design conditions, increasing the stage loading coefficient for a fewer number of turbine stages is effective in terms of performance and size. Furthermore, the Ellipse law can be used to assess off-design performance and increasing exponent of the expansion ratio term better predicts the off-design performance with a few stages (two or three).

A Twin Impulse Turbine for Wave Energy Conversion -The Performance under Unsteady Airflow-

  • Alam, M M Ashraful;Sato, Hideki;Takao, Manabu;Okuhara, Shinya;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.300-306
    • /
    • 2016
  • A twin unidirectional impulse turbine for wave energy conversion has been suggested in our previous study, and the performance under unsteady flow has been investigated by quasi-steady analysis. In the present study, the performance of twin impulse turbine under unsteady flow condition has been investigated by unsteady analysis of Computational fluid dynamics. As a result, the mean efficiency of twin unidirectional impulse turbine under unsteady flow is lower than the maximum efficiency of unidirectional impulse turbine. Moreover, it is verified that airflow goes backward in the reverse turbine in low flow rates.

Control of Pump Performance with Attaching Flaps on Blade Trailing Edges

  • Kanemori, Yuji;Pan, Ying Kang
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.109-120
    • /
    • 2008
  • An innovative method of changing a centrifugal low specific speed pump performance and pressure fluctuation by applying outlet flaps to impeller exit has been investigated. The outlet blade edge section corresponds to the trailing edge of wing on the circular-cascade, which dominates the pump performance and pressure fluctuation. Computational fluid dynamics (CFD) analysis of the entire impeller and volute casing and an experimental investigation are conducted. The pressure fluctuation and the vibration of the shaft are measured simultaneously. Kurtosis is applied as a dimensionless parameter with which the unevenness of velocity distribution at impeller outlet is indicated. The influence of the flaps on the pressure fluctuation is explained by the kurtosis. This paper presents a theoretical method of predicting the pump performance related to the attachment of a flap at impeller outlet.

레인지 후드용 시로코 홴 성능 특성에 관한 연구 (A Study on the Performance Characteristics of the Sirocco Fan in a Range Hood)

  • 박상태;최영석;박문수;김철호;권오명
    • 한국유체기계학회 논문집
    • /
    • 제8권2호
    • /
    • pp.9-15
    • /
    • 2005
  • This paper presents an experimental and numerical study on the overall performance and local flow characteristics of sirocco fan in a range hood. Measurement of overall performance for sirocco fans were conducted based on AMCA standard 210. The effects of flow blockages due to the motor inside the fan on the fan performance were investigated by experimentally and numerically and the results were compared with each other. The numerical and experimental results show the inlet flow blockage reduces the performance (ie. fan static pressure, design flow rate, maximum efficiency and free delivery flow rate) of fan. It is found that the blockage makes the flow field highly non-uniform through the blade and cause the efficiency decrement.

CFD을 이용한 프란시스 수차의 내부유동 해석 (Performance Analysis of Francis Turbines by CFD)

  • 최현준;황영철;김유택;남청도;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2010
  • The conventional method to assess turbine performance is its model testing which becomes costly and time consuming for several design alternatives in design optimization. Computational fluid dynamics (CFD) has become a cost effective tool for predicting detailed flow information in turbine space to enable the selection of best design. In the present paper, Francis turbine of commercial small hydropower plants which is under 70kw is investigated. Solutions are investigated with respect to the hydraulic characteristics against an outward angle of guide vane, the number of guide vane and head (inlet velocity). By suitable modification of the runner shape, low pressure zone on the leading edge can be reduced. If the entire runner is to be optimized in this manner, flow simulation tests have to be carried out on a series of different geometrical shape.

  • PDF

A NUMERICAL INVESTIGATION OF INDOOR AIR QUALITY WITH CFD

  • Sin Vai Kuong;Sun Ho I
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.87-93
    • /
    • 2005
  • Macao, a city with three sides bounded by water, is hot and humid in weather in more than six months of a year. This uncomfortable weather induces the frequency of operating air-conditioners. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In the paper, investigation of distribution on carbon dioxide, room air temperature and velocity, as well as air diffusion performance index (ADPI) of a single bedroom in Macao is studied by using the computational fluid dynamics (CFD) software FLOVENT 3.2. Simulations of locating the air-conditioner at 4 different walls will be done and comparisons and analyses of the results will be performed to decide a proper location for the air-conditioner for obtaining good thermal comfort.

CFD의 불확실성 해석에 대한 고찰 및 소스 공개 코드를 이용한 선박저항성능에의 적용 (A Study on CFD Uncertainty Analysis and its Application to Ship Resistance Performance Using Open Source Libraries)

  • 서성욱;송성진;박선호
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.329-335
    • /
    • 2016
  • In the present paper, Computational fluid dynamics (CFD) uncertainty analysis proposed by ITTC was investigated and applied to ship resistance performance using open source libraries, called OpenFOAM. Uncertainties for grid size, time step and iteration number were studied. Wave patterns and hull wave profile were compared for various uncertainty parameters. From results, grid size uncertainty was mainly contributed to simulation numerical uncertainty.

공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석 (Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect)

  • 김동현;김요한;류경중;김동환;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

A numerical and experimental study on the performance of a twisted rudder with wavy configuration

  • Shin, Yong Jin;Kim, Moon Chan;Lee, Joon-Hyoung;Song, Mu Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.131-142
    • /
    • 2019
  • In this paper, a Wavy Twisted Rudder (WTR) is proposed to address the discontinuity of the twisted section and increase the stalling angle in comparison to a conventional full-spade Twisted Rudder (TR). The wave configuration was applied to a KRISO Container Ship (KCS) to confirm the characteristics of the rudder under the influence of the propeller wake. The resistance, self-propulsion performance, and rudder force at high angles of the wavy twisted rudder and twisted rudder were compared using Computational Fluid Dynamics (CFD). The numerical results were compared with the experimental results. The WTR differed from the TR in the degree of separation flow at large rudder angles. This was verified by visualizing the streamline around the rudder. The results confirmed the superiority of the WTR in terms of its delayed stall and high lift-drag ratio.

그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션 (Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network)

  • 박태원;김인섭;이훈;박동우
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.