• Title/Summary/Keyword: Fluid Distribution

Search Result 1,696, Processing Time 0.03 seconds

Eco-friendly Control of Whiteflies by Two-Fluid Fogging System (이류체 포그시스템을 이용한 친환경적 가루이 방제)

  • Kim, Sung-Eun;Lee, Sang-Don;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.120-126
    • /
    • 2012
  • Two experiments were designed and executed to measure the effectiveness of the two-fluid fogging system in controlling whiteflies in tomato cultivation. The two-fluid fogging system that lowers temperature and raises humidity in greenhouses provides an eco-friendly method of preventing damages from whiteflies. The first experiment elucidated the effect of fogging treatment on the elimination of whiteflies and investigated the sectional distribution of whiteflies. The second experiment analyzed the vertical distribution, the motility of whiteflies and reduction of the number of whiteflies under the fogging system. The result of the experiments showed that the fogging system lowered the number of whiteflies and decreased their motility significantly. It affected the vertical distribution of whiteflies as well. Based on these experiments, we strongly recommend using the fogging system to prevent and control whiteflies in greenhouses, in addition to installing yellow sticky traps in the areas that have the highest density of whiteflies.

Effects of Latin hypercube sampling on surrogate modeling and optimization

  • Afzal, Arshad;Kim, Kwang-Yong;Seo, Jae-won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.240-253
    • /
    • 2017
  • Latin hypercube sampling is widely used design-of-experiment technique to select design points for simulation which are then used to construct a surrogate model. The exploration/exploitation properties of surrogate models depend on the size and distribution of design points in the chosen design space. The present study aimed at evaluating the performance characteristics of various surrogate models depending on the Latin hypercube sampling (LHS) procedure (sample size and spatial distribution) for a diverse set of optimization problems. The analysis was carried out for two types of problems: (1) thermal-fluid design problems (optimizations of convergent-divergent micromixer coupled with pulsatile flow and boot-shaped ribs), and (2) analytical test functions (six-hump camel back, Branin-Hoo, Hartman 3, and Hartman 6 functions). The three surrogate models, namely, response surface approximation, Kriging, and radial basis neural networks were tested. The important findings are illustrated using Box-plots. The surrogate models were analyzed in terms of global exploration (accuracy over the domain space) and local exploitation (ease of finding the global optimum point). Radial basis neural networks showed the best overall performance in global exploration characteristics as well as tendency to find the approximate optimal solution for the majority of tested problems. To build a surrogate model, it is recommended to use an initial sample size equal to 15 times the number of design variables. The study will provide useful guidelines on the effect of initial sample size and distribution on surrogate construction and subsequent optimization using LHS sampling plan.

Convergence of Fluid Dynamics and Computer Simulation for the Internal Investigation of Fuel Cell (유체역학과 컴퓨터 시뮬레이션의 융합을 통한 연료전지의 분석)

  • Kim, Se Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.245-251
    • /
    • 2016
  • A numerical model is developed to predict distributions of current density and temperature. Also the complete fuel cell performances were compared. In this study the effect of flow field design and flow direction on current density and temperature distribution as well as full cell performance. The complete three-dimensional Navier-Stokes equations were solved with convergence of electro-chemical reactions terms. In this paper, the two different flow field design were simulated, straight channel and rectangular serpentine flow channel, which is commonly used. The effect of flow direction, co-flow and counter-flow, was also analyzed. The current density and temperature is higher with abundant oxygen not fuel. Also, temperature distribution was able to be drawn by using computer simulation. In this paper, the relationship among flow pattern, flow field design and current denstity distribution.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

A Study on Process Design of Hot Oil Flushing System Using Oil-Nitrogen Gas Mixing Fluid (오일-질소가스 혼합유체를 이용한 고온 오일플러싱 시스템 공정설계에 관한 연구)

  • Lee, Yoon-Ho;Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.541-548
    • /
    • 2017
  • A theoretical study on gas-liquid two-phase flow flushing systemnitrogen gas to the oil used for existing flushing equipment was conducted on the basis of ISO code so as to improve performance of existing high-temperature oil flushing equipment used in ocean plant facility drying field. For study, we analyzed process simulation results mixed fluid mixing ratio, temperature, Reynolds number and liquid hold up affectcleaning performance after designing oil-nitrogen gas mixture flushing system process. As a result, as the volume flow rate of mixed fluid increases with the tube diameter the volume fraction of the gas phase constant, the liquid fraction difference value at the inlet and outlet of horizontal hydraulic piping increases. It was found that the phase distribution between oil and nitrogen gas bubbles varies depending on the position the pipe lengthdirection. This change in phase distribution is expected to have a significant impact on the clean performance of an oil-nitrogen gas mixture flushing system.

A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet (워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석)

  • Gwak, Cheong-Yeol;Shin, Bo-Sung;Go, Jeung-Sang;Kim, Moon-Jeong;Yoo, Chan-Ju;Yun, Dan-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

A Study on the Resistance Performance and Flow Pattern of High Speed Planing Hull using CFD (전산유체계산을 통한 고속 활주선의 저항성능 및 유동분포 해석)

  • Park, Kyurin;Kim, Dong Jin;Kim, Sun Young;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Unmanned Surface Vehicle (USV) is being developed to do maritime survey and maritime surveillance at Korea Research Institute of Ships & Ocean engineering (KRISO). The goal is that USV should be operated at the maximum speed of 45 knots and it should be operated at sea state 4. Therefore the planing hull of USV should be excellent in resistance performance and manoeuvring performance. It is needed to check its performance using Experimental Fluid Dynamics (EFD), Computational Fluid Dynamics (CFD) or analytic method before designing the hull. In this study, resistance performance was analyzed by EFD and CFD. EFD with heave and pitch was performed at high speed towing system in Seoul National University. CFD was performed using SNUFOAM based on openFOAM with dynamic mesh to calculate running attitudes. The results of CFD were compared with EFD results. The results of CFD were resistance, running attitudes and wave height. The flow distribution and pressure distribution were also analyzed. The results of numerical resistance was under estimated than EFD. Even though the results of CFD have a slight limitation, it can be successfully used to estimate the resistance performance of planing hull. In addition it can be used as a supplement for EFD results.

A Study on the Fluid Flow of Vortex Nozzle for Generating Micro-bubble (미세버블 발생용 보텍스 노즐의 유체유동에 대한 연구)

  • Yu, Seong-Hun;Park, Sang-Hee;Kang, Woo-Jin;Han, Seung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.637-644
    • /
    • 2022
  • In this study, the flow characteristics according to the shape of the vortex nozzle was studied by numerical analysis and the amount of microbubble generation was measured experimentally. The shape of the vortex nozzle is cylindrical, diffuser, and conical type. The axial fluid velocity in the induced tube gradually increased from the inlet to the outlet. In particular, the fluid velocity in the nozzle part increased rapidly. The velocity distribution of the fluid at the inlet of the induced tube showed that the flow rotates counterclockwise in the outer region and the inner center of the induced tube. At the outlet of the induced tube, the cylindrical and conical type showed rotational flow, and the diffuser type showed irregular turbulent flow. The dimensionless pressure ratio 𝜂 of the inner region of the induced tube was lower than that of the outer region. Also, 𝜂 near the outlet of the induced tube in cylindrical and conical type showed a similar tendency to the inlet area. At the outer region of inlet of induced tube, intense vorticity was observed on the wall and in lower region. At the inner region of inlet of induced tube, intense vorticity was observed on the inner wall of the induced tube and in the central region of the inlet of the induced tube. At the outlet of induced tube, in the case of the cylindrical and conical type, intense vorticity was observed near the inner wall, the diffuser type showed irregular strong vorticity inside the tube. The total number of bubbles measured was the most in the cylindrical type, and the microbubbles less than 50mm occurred the most in the conical type.

INFLUENCE OF THERMAL CONDUCTIVITY AND VARIABLE VISCOSITY ON THE FLOW OF A MICROPOLAR FLUID PAST A CONTINUOUSLY MOVING PLATE WITH SUCTION OR INJECTION

  • Salem, A.M.;Odda, S.N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.45-53
    • /
    • 2005
  • This paper investigates the influence of thermal conductivity and variable viscosity on the problem of micropolar fluid in the presence of suction or injection. The fluid viscosity is assumed to vary as an exponential function of temperature and the thermal conductivity is assumed to vary as a linear function of temperature. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using shooting method. Numerical results are presented for the distribution of velocity, microrotation and temperature profiles within the boundary layer. Results for the details of the velocity, angular velocity and temperature fields as well as the friction coefficient, couple stress and heat transfer rate have been presented.

  • PDF