• Title/Summary/Keyword: Fluid Distribution

Search Result 1,682, Processing Time 0.025 seconds

Stress Based Node Refill Model for Lattice-Boltzmann Method on Fluid-Structure Interaction Problems (격자 볼츠만 법의 유체 구조 연성해석 적용에 대한 응력 기반 격자 재생성 모델)

  • Shin, Jae-Ho;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • The Lattice Boltzmann Method has developed for solving the Boltzmann equation in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. When a immersed boundaries are sweeping the fixed fluid node, refilling the node information in a vicinity of fluid nodes is one of the important issues in Lattice Boltzmann Method. In this study, we propose a simple refill algorithm for the particle distribution function based on a proper velocity, density and strain rate to enhance accuracy and stability of the method. The refill scheme based on a asymptotic analysis of LBGK model has improved accuracy than interpolation schemes. The proposed scheme in this study is validated by the simulations of an impulsively started rotating circular cylinder to investigate adaptability for fluid-structure interaction (FSI) problem. This refill scheme has improved stability and accuracy especially at high Reynolds number region.

Thermal and Structural Analyses of Semi-metallic Gasket Joined with Graphite Seal for Ship Engine Piping Flange (선박엔진 배관 플랜지용 세미금속 가스켓의 열전달 및 구조해석)

  • Oh, Jeong-seok;Lee, In-sup;Yoon, Han-ki;Sung, Heung-kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.352-356
    • /
    • 2017
  • We performed thermal and structural analyses to evaluate the structural integrity of a semi-metal gasket for a flange with increases in the internal fluid temperature and pressure using a commercial FEA program. As a thermal analysis result, the temperature distribution of the gasket body increased with an increase in the internal fluid temperature until the maximum fluid temperature of $600^{\circ}C$. In addition, the structural analysis showed that contact pressures of more than 35 MPa occurred uniformly in the graphite seal regions. It was found that no fluid leakage occurred under the load conditions for the structural analysis because the contact pressure in the graphite seal region was greater than the maximum internal fluid pressure of 35 MPa. Therefore, we demonstrated the structural integrity of the semi-metal gasket by performing the thermal and structure analyses under the maximum fluid temperature of $600^{\circ}C$ and the internal fluid pressure of 35 MPa.

An Experimental Study on the Rotary Regenerator for Air Conditioning according to Variable Inlet Conditions (흡기조건의 변화에 따른 공기조화용 회전재생기에 관한 실험적 연구)

  • 이태우;조진호;서정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.422-429
    • /
    • 1990
  • The experimental study investigates two aspects of counterflow sensible heat regenerator operation. First, it examines the regenerator performance in periodic steady state operation with spatially nonuniform inlet temperature in one of the fluid stream. Second, the study examines the transient response of a regenerator to a step change in the inlet temperature of one of the fluid streams. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change of temperature nonuniformities is analyzed in terms of the change in steady state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. an experimental analysis has been conducted using a counterflow, parallel passage, and rotary regenerator made from polyethylene film. Efficiencies follow similar trends with increasing matrix to fluid capacity rate ratio for the balanced and symmetric regenerator with nonuniform inlet temperature.

Numerical Analysis Study on the Fluid Flow Characteristics of Hydraulic Retarder for Heavy Vehicles (대형 차량용 유압식 리타더의 유동 특성에 관한 수치해석적 연구)

  • Park, In-Sung;Jang, Hyun;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • This study examined the fluid flow characteristics of a hydraulic retarder adapted as an auxiliary brake for heavy vehicles. The commercial computational fluid dynamics (CFD) software STAR-CCM+ was used to investigate the torque performance and flow characteristics of the hydraulic retarder. The numerical results showed that the pressure distribution was higher near the inner wall surface of the rotor and stator. The pressure of the working fluid increased in the radial direction of the rotor and stator. The variation in the fluid velocity intensity showed a similar trend to that of the fluid pressure, but the maximum velocity appeared near the outer wall surface of the rotor and stator interface. The numerical results showed that increasing the revolution speed of the retarder greatly increased the rate of torque generation.

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

Analysis of Delay Performance for QoS Support in Wireless Networks (무선 네트워크에서 Qos 보장을 위한 딜레이 성능 분석)

  • Kim Jenog Geun;Cho Jin Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10B
    • /
    • pp.831-840
    • /
    • 2004
  • Providing quality of service (QoS) guarantees over wireless link requires thorough understanding and quantification of the interactions among the traffic source, the wireless channel, and the underlying error control mechanisms. In this paper, we account for such interactions in a network-layer model that we use to investigate the delay performance of a wireless channel. We consider a single ON/OFF traffic stream transported over a wireless link. The capacity of this link fluctuates according to a fluid version of Gilbert-Elliot's model. We derive the packet delay distribution via two different approaches: uniformization and Laplace transform. Numerical aspects of both approaches are compared. The delay distribution is further used to quantify the wireless effective bandwidth under a given delay guarantee. Numerical results and simulations are used to verify the adequacy of our analysis and to study the impact of error control and bandwidth allocation on the packet delay performance. Wireless networks, QoS, delay distribution, fluid analysis.

Numerical Analysis for the Effect of Flow Skirt Geometry on the Flow Distribution in the Scaledown APR+ (유동 덮개 형상이 축소 APR+ 내부 유동분포에 미치는 영향에 대한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Ku
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.269-278
    • /
    • 2013
  • In this study, in order to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ (Advanced Power Reactor Plus) internal flow, simulation was conducted with the commercial multi-purpose computational fluid dynamics software, ANSYS CFX V.14. In addition, among the various reactor internals, the effect of flow skirt geometry on reactor internal flow was investigated. It was concluded that the porous model for some reactor internal structures could adequately predict the hydraulic characteristics inside the reactor in a qualitative manner. If sufficient computation resource is available, the predicted core inlet flow distribution is expected to be more accurate, by considering the real geometry of the internal structures, especially located in the upstream of the core inlet. Finally, depending on the shape of the flow skirt, the flow distribution was somewhat different locally. The standard deviation of the mass flow rate (${\sigma}$) for the original shape of flow skirt was smaller, than that for the modified shape of flow skirt. This means that the original shape of the flow skirt may give a more uniform distribution of mass flow rate at the core inlet plane, which may be more desirable for the core cooling.