• Title/Summary/Keyword: Fluid Analysis

Search Result 6,654, Processing Time 0.031 seconds

A CFD Analysis of the Oil Flow in a Hydraulic Shock Absorber (유압 완층기 내에서의 오일 유동에 대한 CFD 해석)

  • Park, K.T.;Park, T.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • Various types of hydraulic shock absorbers are widely used in many fields because of its numerous advantages. However, in order to design adequate damping characteristics, accurate flow data near the orifices are required essentially. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is adopted to investigate the flow characteristics near orifices of a shock absorber. Static pressure and velocity vector distributions, fluid path lines are presented for compression/tension strokes and various piston speeds. In order to validate the result of analysis, the numerically obtained damping forces are compared with those of analytical estimations obtained by modified Bernoulli equation. The results reported herein will provide better understanding of the detailed flow fields within shock absorber, and the CFD analysis method proposed in this paper can be used in the design of other types of hydraulic shock absorber.

  • PDF

Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions (수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

Numerical Analysis of Vibration Characteristics in Deep Water Tank (수치해석에 의한 심수 탱크구조물의 진동에 관한 연구)

  • 배성용;홍봉기;배동명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1079-1084
    • /
    • 2003
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks ill contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics in deep water tank are investigated and discussed.

  • PDF

Free Vibration Analysis of a Circular Plate Submerged in a Fluid-filled Rigid Cylinder (유체로 채워진 강체 실린더에 잠긴 원판의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Choi, Suhn;Jhung, Myung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.921-925
    • /
    • 2003
  • An analytical method for the free vibration of single circular plate submerged in a fluid-filled rigid cylindrical vessel was developed by the Rayleigh-Ritz method based on the Fourier-Bessel series expansion. It was assumed that the plate is clamped at an offcentered location of the cylinder, and the non-viscous incompressible fluid contained in the cylinder is bisected by the plate. It was found that the theoretical results can predict well the fluid-coupled natural frequencies with excellent accuracy comparing with the finite element analysis results. The offcentered distance effect on the natural frequencies was also observed.

  • PDF

Dynamic Analysis of Rectangular Liquid Storage Containers Considering Fluid-Structure Interaction effects (유체-구조물 상호작용 효과를 고려한 직사각형 단면의 수조구조물의 동적 해석)

  • 박장호;권기준
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.96-101
    • /
    • 2000
  • The effects of internal fluid motion have to be considered in the analysis of liquid storage containers. Therefore this thesis developed a three-dimensional boundary element-finite element method for the analysis of rectangular liquid storage containers. The irrotational motion of inviscid and incompressible ideal fluid is modeled by using boundary elements and the motion of structure by finite elements. Coupling is performed by using compatibility and equilibrium conditions along the interface. Dynamic response characteristics of rectangular liquid storage containers such as sloshing motion, hydrodynamic pressure, displacement by fluid-structure interaction are investigated.

  • PDF

ADINA/FSI Analysis of Petrochemical Plant Column Mixer (화학 플랜트용 칼럼믹서의 ADINA/FSI 해석)

  • Lee, Won-Suk;Jung, Goo-Choong;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.213-219
    • /
    • 2007
  • Column mixer Is one of the facilities to mix fluids at petrochemical plants. The vibration of column mixer is usually caused by pumps for fluid inflow and mixing of inside fluids. This fluid induced nitration is mainly responsible for the reduction of column life. Measurements were performed for understanding the vibration characteristics of the column. First measurement results showed the need of stiffness reinforcement. After the reinforcement work, second measurement confirmed the difference between two results. Modal analysis was also performed to investigate the resonance of the column vibration and the damage of the rib plate. To confirm fluid induced vibration at the column mixer fluid structure interaction analysis using ADINA/FSI was performed, which showed the necessity of the modification of the rotary valve.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis

  • Kachapi, Sayyid H. Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.

Performance Analysis of Mechanical Face Seal Used for Primary Heat Transport Pump in Heavy Water Reactor (중수로 냉각재 펌프용 미케니컬 페이스 실의 성능 해석)

  • Kim, Jeong-Hun;Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.240-248
    • /
    • 2011
  • Mechanical face seal installed in primary heat transport pump used for heavy water reactor prevents leakage of working fluid using thin working fluid film between primary seal ring and mating ring. If the leakage of working fluid exceeds the allowable volume, serious accident can be happened by the trouble of primary heat transport pump. The thinner fluid film exists between primary seal ring and mating ring, the less working fluid leaks out. On the other hand, if the thickness of fluid film is not enough, the life of mechanical face seal will be reduced by friction and wear. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the performance of mechanical face seals which have same deep straight groove and 11 different net coning values. As results, equilibrium clearance between primary seal ring and mating ring, leakage volume of working fluid, friction torque on sealing surface and stiffness of working fluid film were obtained. With increasing net coning value, equilibrium clearance and leakage volume increase, and friction torque and stiffness of fluid film decrease.

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.