• Title/Summary/Keyword: Fluid Actuator

Search Result 258, Processing Time 0.031 seconds

Development of the Pneumatic Rotary Actuator for Marine Winch

  • Kim, D.-S;Lee, W.-H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.354-360
    • /
    • 2004
  • It is well known that pneumatic actuators convert fluid power into mechanical power with a low efficiency. The pneumatic rotary actuators are used in not only marine winches. but also hoists, agitators, and excavators. The efficiency of pneumatic rotary actuators depends on several factors, such as type of actuator. speed, supply pressure. size and geometry of the actuator. This paper presents an analytical and experimental study of the performance of pneumatic rotary actuators. We investigate all the major aspects of the air flow through a pneumatic rotary actuator and points out the main causes of the low efficiency of the actuator. Therefore the design parameters which can lead to optimum performance are obtained.

Finite Element Analysis of A Piezoelectric Actuator (압전 작동기 거동해석을 위한 유한요소 모사)

  • Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1401-1406
    • /
    • 2003
  • Mechanical behavior of a piezoelectric actuator is studied as a preceding research for the manufacturing of three-dimensional micro-structures. It is needed to examine the simulation of a piezoelectric actuator according to applied direction of voltage, by researching displacement characterization of piezoelectric material through piezoelectric theory. To this end, finite element modeling is employed to study the response of a piezoelectric material under the various input voltages. Where the actuator is simulated by use of ANSYS. To avoid direct contact piezoelectric material with working fluid, silicon, polymer, etc., the actuator is modeled with nickel fixed diaphragm.

  • PDF

Numerical Study of 3D Unsteady Flow in a Blood Sac of TPLS: Effect of Actuator Speed (TPLS 혈액주머니 내의 3차원 비정상유동에 대한 수치해석 연구: 액추에이터 속도의 영향)

  • Jung G. S.;Seong H. C.;Park M. S.;Ko H. J.;Shim E. B.;Min B. G.;Park C. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.206-211
    • /
    • 2003
  • This paper reports the numerical results for blood flow of the sac squeezed by moving actuator in the TPLS(Twin Pulse Life Support System). Blood flow in the sac is assumed to be 3-dimensional unsteady newtonian fluid. where the blood flow interacts with the sac, which is activated by the moving actuator. The flow field is simulated numerically by using the FEM code, ADINA. It is well known that hemolysis is closely related to shear stress acted on blood flow. According to this fact, we simulate four models with different speed for moving actuator and examine the distribution of shear stress for each model. Numerical results show that maximum shear stress is strongly dependent on the actuator speed.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Numerical analysis of blood flow in the cactus type KTAH (선인장 형태의 한국형 인공심장 내 3차원 혈류의 수치적 해석)

  • Park M.S.;Ko H.J.;Min B.G.;Shim E.B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.695-696
    • /
    • 2002
  • Three-dimensional blood flow in the sac of the KTAH(Korean total artificial heart) is simulated using fluid-structure interaction model. The aim of this study is to delineate the three-dimensional unsteady-blood flow in the sac of KTAH. Incompressible viscous flow is assumed for blood using the assumption of Newtonian fluid. The numerical method employed in this study is the finite element software called ADINA. Fluid-structure interaction model between blood and sac is utilized to represent the deformation of the sac by the rigid moving actuator. Three-dimensional geometry of cactus type KTAH is chosen for numerical model with prescribed pressure boundary condition on the sac surface. Blood flow is generated by the motion of moving actuator and strongly interacts with the solid material surrounding blood. High shear stress is observed mainly near the inlet and outlet of the sac.

  • PDF

A Thesis of Design Air Operated Valve Actuator in Nuclear Power Plant (원자력 발전소 AOV 구동기 설계 정립화)

  • Choi, J.K.;Hwang, J.H.;Kim, Y.B.;Son, K.Ch.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2616-2620
    • /
    • 2008
  • AOV used fluid capacity and fluid pressure control in nuclear power plant with heating power plant. AOV structures safely must be secured the reliability and a safety of the atomic power plant. but, AOV where is used from domestic is using the product of the overseas enterprise. The AOV design and maintenance technique is insufficient. Therefore According to ASME designed AOV, The performance test resultant fluid leakage did not occur and AOV design was satisfactory.

  • PDF

A Study of Friction Characteristics in Magneto-Rheological Elastomer (자기유변탄성체 액츄에이터의 마찰특성 연구)

  • Lee, Deuk-Won;Lee, Chul-Hee;Kim, Cheol-Hyun;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.213-217
    • /
    • 2011
  • In this study, friction characteristics using elastomeric actuator with Magneto-rheological (MR) materials are identified. Typically, Magneto-rheological materials are divided into two groups by MR fluid in fluid state and MR elastomer in solid state like rubber. The stiffness characteristics of Magneto-rheological material can be changed as magnetic field is applied. MR fluid has been applied to various industry fields such as to brake, clutch, damper, engine mount and etc. However, MR fluid has been used under the sealed condition to prevent leaking issues. In order to overcome these problems, MR elastomer that has same property as MR fluid has been developed and studied. MR elastomer mainly consists of polymer material such as natural rubber or silicon rubber with particles that can be polarized with magnetic field. And it is called as a smart material since its stiffness and damping characteristics can be changed. In this study, MR elastomer is produced and pin-on-disc tests are carried out to identify the friction characteristics of the material. Several test conditions are applied to evaluate the feasibility to use as a smart actuator in the field of vibration control.

A Study on the Control Characteristics of FHA by Using ERF and Industrial Controller (ERF와 산업용 콘트롤러를 이용한 FHA의 제어특성에 관한 연구)

  • Jang Sung-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • Making the best use of the features of the electro-rheological(ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. In addition, the performance of the plate type ER-Valve is investigated by change the particle concentration of the ER fluid. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power control system. Using the minかnぉd pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system fir the ER Valve which occurs from industrial controller(PLC).

Study on the Vibration Control Characteristics of ER Actuator for Application in Intelligence Process Control Systems(PLC) (지능형 공정제어 시스템 적용을 위한 ER 작동기의 진동제어 특성에 관한 연구)

  • Jang, Sung-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2005
  • This paper presents experiments on the evaluation of characteristics of ER fluids used for vibration control of application in intelligence type process control systems. Dynamic characteristics of the actuator(beam) embedded with the ER fluid can be controlled by changing the strength of the electric field applied on the ER fluids, thus provides a mean to avoid the resonance. In case electric field is supplied to the smart structure with ER fluids, vibration energy is dissipated more than the beam without electric field, because particles in ER fluid form a chain structure in the presence of electric field. The damping and stiffness of the beam with ER fluid are increased when the applied electric field increases. The characteristics of damping and stiffness of the ER fluid with various electric field strength were investigated by conducting a vibration test of the beam with ER fluid. If it applies characteristics of the ER fluids, it will be able to apply in the PLC control system for the vibration which occurs from process system.

  • PDF