• Title/Summary/Keyword: Fluid Actuator

Search Result 258, Processing Time 0.033 seconds

Design of a micro fluid actuator driven by electromagnetic force (전자기력을 이용한 마이크로 유체구동기의 설계)

  • Kim D.H.;Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1988-1991
    • /
    • 2005
  • A micro fluid actuator driven by electromagnetic force at MEMS(Micro Electro Mechanical System) level has been designed. The operation of the actuator was simulated in three steps. First, fluid flow analysis has been performed to determine the actuator load. With the load, dynamic behavior of the actuator structure has been analysed. Finally, fluid-structure interaction analysis has been performed to predict the performance of the actuator. To avoid excessive amount of computation, axisymmetric and plane strain 2-D models were used.

  • PDF

Notch Characteristics of Spool Actuator (스풀 액추에이터의 노치 특성)

  • Yun, So-Nam;Kang, Bo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.751-756
    • /
    • 2008
  • This paper presents the fluid characteristics of the spool actuator used for construction vehicles. A spool actuator is used for directional control of pressurized fluid and has a roll to lock the fluid flow. It is important to design the spool actuator optimally because this actuator is actuated in the sleeve by sliding motion and has some critical design parameters such as stick-slip, leakage and shock pressure. The parameters like stick-slip and leakage can be solved by precision manufacturing but the shock pressure which is taken place when the fluid direction is changed needs the parameter analysis procedure throughly. In this study, mathematical modeling and 2 & 3 phase flow dynamics analysis of the spool actuator were achieved. Using suggested model, all possible operating conditions were analyzed.

  • PDF

Electromagnetic Design Methodology for MR Fluid Actuator (MR 유체 작동기의 전자기적 설계 방법)

  • Nam Yun-Joo;Moon Young-Jin;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1305-1313
    • /
    • 2006
  • This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

A study on the force control of a servo actuator with built-in MR Valve (MR 밸브 내장형 서보 액추에이터의 힘 제어에 관한 연구)

  • Ahn K.K.;Song J.Y.;Kim J.S.;Ahn Y.K.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A servo actuator with a valve using MR (Magneto-Rheological) fluid is proposed for fluid control systems. The MR fluid is well known as a functional fluid whose apparent viscosity is controlled by the applied magnetic field strength. The pressure in the MR cylinder can be controlled by the applied magnetic field strength. Good points of the MR cylinder are more simple, compact and reliable structure than a conventional oil hydraulic cylinder. The experimental results show that the MR cylinder could be used as a servo actuator.

  • PDF

Effects of Viscosity of Hydraulic Oil on the Performance of Actuator (유압유 점도가 액추에이터 성능에 미치는 영향)

  • Kim, Jin-Hyoung;Han, Su-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.

A study on the Linear Actuator with Magnetic Fluid (자성 유체를 이용한 Linear Actuator에 관한 연구)

  • Seo, Kang;Park, Gwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.81-86
    • /
    • 2002
  • 이전에 Magnetic Fluid를 이용하여 의료기기 등에 사용할 목적으로 Linear Actuator를 설계, 제작하였다. 그러나 이 모델은 공극의 높은 자기저항으로 인해 펌핑 압력이 낮고, 그 부피 또한 크다. 따라서 본 논문에서는 Yoke를 이용하여 Linear Actuator를 소형화하고 자기저항을 최소화함으로써 펌핑 압력을 향상시켰다. 또한 Linear Actuator의 3D해석을 통하여 Yoke의 폭, 두께, 간격에 대한 최적 크기를 계산하고 설계하였으며, 실제 제작 및 실험을 하였다.

  • PDF

Laser Microfabrication of Micro Actuator (레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발)

  • 김광열;고상철;박현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

Dynamic Characteristics of Magneto-rheological Fluid Actuator for Micro-motion Control (미세동작제어를 위한 자기유변유체 구동기의 동적 특성)

  • Kim, Pyunghwa;Han, Chulhee;Suresh, Kaluvan;Park, Choon-Yong;Shin, Cheol-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.511-517
    • /
    • 2016
  • This paper presents dynamic characteristics of a new actuator using magneto-rheological(MR) fluid between two electrode type coils. The concept of the actuator is to strengthen the force due to the magnetic field produced by the electrode-coil for MR fluid. The amount and direction of current input to the electrode-coils decide the characteristics of contraction-mode and extension-mode. For achieving the required actuating displacement and actuating force, the yield stress of the MR fluid between two electrode-coils is precisely changed by the input current. In this work, the MR fluid is operated in squeeze mode. The experimental results shown in this paper depict that it can be applied in the micro-level displacement and vibration control system.

A Study on Shape Optimization of Electro-Magnetic Proportional Solenoid (비례솔레노이드 형상 최적설계에 관한 연구)

  • Yun S.N.;Ham Y.B.;Kang J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2005
  • There are two types of solenoid actuator for force and position control of the fluid power system. One is an on-off solenoid actuator and the other is an electro-magnetic proportional actuator. They have some different characteristics for attraction force according to solenoid shape. Attraction force of the on-off solenoid actuator only depends on flux density. And the stroke-force characteristics of the proportional solenoid actuator are determined by the shape of the control cone. In this paper, steady state characteristics of the solenoid actuator for electro-hydraulic proportional valve determined by the shape of control cone are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attractive force in the control region independently on the stroke position. And the shape of control cone is optimized using 1+1 evolution strategy to get a constant force. In the optimization algorithm, control cone length, thickness and taper length are used as a design parameter.

  • PDF

Improvement of Transient Response Characteristics of Pneumatic Manipulator using MR Brake (MR Brake를 이용한 공압 머니퓰레이터의 과도응답특성의 향상)

  • Ahn K.K.;Song J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • The goal of this paper is to improve the position control performance of pneumatic rotary actuator with variable brake using Magneto-Rheological Fluid. The air compressibility and the lack of damping of the pneumatic actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In this study, a variable rotary brake comprising Magneto-Rheological Fluid is equipped to the joint of a pneumatic manipulator. Experiments of step response have proved that the transient response of the manipulator could be improved compared with that of the conventional control algorithm by using a phase plane switching control algorithm.

  • PDF