• Title/Summary/Keyword: Fluent code

Search Result 389, Processing Time 0.02 seconds

Necessary Conditions for Optimal Ventilation of Small Negative Pressure Ventilating Piglet House with Corridor and Attic for Preheating (소규모 복도-더그매 예열 음압환기방식 무창자돈사의 최적 환기 요건에 관한 연구)

  • Lee, Seung-Joo;Chang, Dong-Il;Hwang, Seon-Ho;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.434-442
    • /
    • 2010
  • This study was carried out to determine necessary conditions for optimal ventilation of small windowless piglet house (4.0 (W) $\times$ 11.0 (L) $\times$ 2.6(H) m) with corridor and attic for preheating using CFD (Computational Fluid Dynamics) simulation. The experimental weaning piglet house was consisted of a corridor, an attic, 4 rooms (3.0 (W) $\times$ 2.75(L) m), 3 fences (0.7(H) m), 5 air inlets and 2 exhaust fans (0.4 (D) m) and simulated using CFD code, FLUENT. The simulation results for the experimental weaning piglet house showed that each room was uniformly ventilated under all the experimental conditions and air velocities at 0.1 m above floor are less than 0.15 m/s for 0.75 m/s and 1.0 m/s of air inlet velocity but 0.61 m/s for 1.25 m/s. The simulation results are similar to the measured results. Considering the air flow pattern, ventilating efficiency, air velocity at 0.1 m above floor and cold stress of weaning piglets and so on, the optimum velocity of air inlet might be 1.0 m/s.

Effect of Orifice Type and Number on the Mixing and Flow Characteristics in In-line Mixer (관내 혼화장치의 오리피스 형상과 개수에 따른 혼화 및 유동특성)

  • Jeong, Seon Yong;Chung, Won Sik;Rhi, Seok Ho;Lee, Kye Bock;Lee, Dae Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.6-13
    • /
    • 2017
  • This study examines the effect of the type and number of orifices in an in-line mixer to improve the mixing performance and pressure loss. Recently, in-line non-power-consuming mixers have been increasingly used to complement mechanical mixers, which have a long dwell time, noise, excessive energy consumption, and high maintenance costs. An in-line mixer with an orifice for efficient mixing in water treatment was examined by numerical analysis using the commercial code FLUENT. The flow characteristics of pressure loss and velocity distribution within the mixer and the mixing efficiency were compared with and without the orifices. The CFD results show that the mixing efficiency was improved, but the pressure loss was increased by the in-line mixer with an orifice. A sensitivity study was also done on the principal parameters.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Numerical Investigation on the Applicability of Wave-Induced Swirl Water Chamber for Wave Power Generation in Coastal Water of Korea (파력발전을 위한 파유기 회전수류 유수실의 국내 연안 적용 가능성에 대한 수치해석적 조사)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.32-42
    • /
    • 2013
  • In this paper, a wave-induced swirl water chamber (SWC) for breakwater and wave power generation is introduced and its applicability to wave power generation in the coastal waters of Korea is investigated. The SWC type of wave power generation is a way to drive a turbine using the unidirectional swirl flow that is induced in the back of a curtain wall of a breakwater due to incident waves. The typical wave characteristics are obtained by analyzing the annual statistical wave data from KHOA (Korea Hydrographic and Oceanographic Administration). A numerical analysis is carried out on the variations in the SWC entrance height, wave height, and different installation conditions. For the numerical analysis, a commercial code, Fluent based on FVM, is used. As the entrance height decreases, the mass flow rate through the entrance is rarely changed, whereas the magnitude of the flow velocity of the smaller entrance height is greater than the other ones, which is better for the formation of an SWC swirl flow inside and the flow kinetic energy at the entrance. In cases of installation conditions where a wall is place behind and under SWC, it has been shown that the mass flow rate through the entrance is greater than that in the open condition, and sufficient flow kinetic energy is generated in the entrance for wave power generation. However, the swirl flow kinetic energy is relatively small. Thus, in the future, it is necessary to study the swirl flow generation, which is affected by the SWC shape.

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

A Numerical Study of Turbulent Flow Around a Twin-Skeg Container Ship Model with Appendages

  • Kim, Hyoung-Tae;Lee, Pyung-Kuk;Kim, Hee-Taek
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.12-23
    • /
    • 2006
  • In this paper, a numerical study is carried out to investigate the turbulent flow around a twin-skeg container ship model with rudders including propeller effects. A commercial CFD code, FLUENT is used with body forces distributed on the propeller disk to simulate the ship stem and wake flows with the propeller in operation. A multi-block, matching, structured grid system has been generated for the container ship hull with twin-skegs in consideration of rudders and body-force propeller disks. The RANS equations for incompressible fluid flows are solved numerically by using a finite volume method. For the turbulence closure, a Reynolds stress model is used in conjunction with a wall function. Computations are carried out for the bare hull as well as the hull with appendages of a twin-skeg container ship model. For the bare hull, the computational results are compared with experimental data and show generally a good agreement. For the hull with appendages, the changes of the stem flow by the rudders and the propellers have been analyzed based on the computed result since there is no experimental data available for comparison. It is found the flow incoming to the rudders has an angle of attack due to the influence of the skegs and thereby the hull surface pressure and the limiting streamlines are changed slightly by the rudders. The axial velocity of the propeller disk is found to be accelerated overall by about 35% due to the propeller operation with the rudders. The area and the magnitude of low pressure on the hull surface enlarge with the flow acceleration caused by the propeller. The propellers are found to have an effect on up to the position where the skeg begins. The propeller slipstream is disturbed strongly by the rudders and the flow is accelerated further and the transverse velocity vectors are weakened due to the flow rectifying effect of the rudder.

Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing (베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Lee, WonSeok;Park, JiBin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 1 - Effect of Film-Temperature Boundary Condition (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제1보 - 유막온도경계조건의 영향)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.267-273
    • /
    • 2022
  • Surface texturing is the latest technology for processing grooves or dimples on the friction surface of a machine. When appropriately applied, it can reduce friction and significantly increase durability. Despite many studies over the past 20 years, most are isothermal (ISO) analyses in which the viscosity of the lubricant is constant. In practice, the viscosity changes significantly owing to the heat generated by the viscous shear of the lubricant and film-temperature boundary condition (FTBC). Although many thermohydrodynamic (THD) analyses have been performed on various sliding bearings, only few results for surface-textured bearings have been reported. This study investigates the effects of the FTBC and groove number on the THD lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves. The continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations are numerically analyzed using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and temperature distributions, variations of load-carrying capacity (LCC), and friction force with four FTBCs. The FTBCs greatly influence the lubrication characteristics of surface-textured parallel thrust bearings. A groove number that maximizes the LCC exists, which depends on the FTBC. ISO analysis overestimates the LCC but underestimates friction reduction. Additional analysis of various temperature boundary conditions is required for practical applications.

Lubrication Analysis of Surface-Textured Inclined Slider Bearing with Rectangular Dimples (사각형 딤플로 Surface Texturing한 경사진 Slider 베어링의 윤활해석)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • With the world's fast expanding energy usage comes a slew of new issues. Because one-third of energy is lost in overcoming friction, tremendous effort is being directed into minimizing friction. Surface texturing is the latest surface treatment technology that uses grooves and dimples on the friction surface of the machine to significantly reduce friction and improve wear resistance. Despite the fact that many studies on this issue have been conducted, most of them focused on parallel surfaces, with relatively few cases of converging films, as in most sliding bearings. This study investigated the lubrication performance of surface-textured inclined slider bearings. We analyzed the continuity and Navier-Stokes equations using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and velocity distributions and the lubrication performance according to the number and orientation of rectangular dimples. Partial texturing somewhat improves the lubrication performance of inclined slider bearings. The number of dimples with the maximum load-carrying capacity (LCC) and minimum friction is determined. When the major axis of the dimple is arranged in the sliding direction, the LCC and friction reduction are maximized. However, full texturing significantly reduces the LCC of the slider bearing and increases the flow rate. The results have the potential to improve the lubrication performance of various sliding bearings, but further research is required.

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.