• Title/Summary/Keyword: Flue-gas

Search Result 606, Processing Time 0.027 seconds

Finite Element Analysis of Gas-Gas Heater Sector Plate in Thermal Power Plant (화력발전용 가스재열기 Sector Plate의 유한요소 해석)

  • Hwang, Suk-Hwan;Lee, Hoo-Gwang;Choi, Jae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.860-864
    • /
    • 2001
  • Today's industrialized plants are required to reduce SOx emitted from stacks at factories, utility power stations, etc. For this purpose, flue gas desulfurization (FGD) system is installed and gas-gas heater (GGH) is used to play a vital role to reheat the wet treated gas from FGD. The sector plates are located at cold and hot sides of gas gas heater. They serve as sealing to prevent mixing treated and untreated gases. Therefore, the deformation of the sector plate due to its dead weight and gas pressure should be considered as major factor for the sector plate design.

  • PDF

Experimental Study on the Flue Gas Phenomena in Infrared Mobile Heaters (이동식 적외선 가스히터의 배기가스현상에 대한 실험적 연구)

  • 김영규;류근준
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.119-125
    • /
    • 1996
  • The experimental work is performed to obtain content levels and characteristics of flue gas in infrared mobile heaters for butane gas with varying the chamber size and its room temperature. The results showed that the oxygen depletion sensor device is operated at 18.3% of oxygen content. And the relation of oxygen content and carbon dioxide content in an enclosed space show linear aspect, but the content rate of carbon monoxide occurs at random without the level of oxygen content and carbon dioxide content.

  • PDF

Absorption Equilibrium of CO2 in the Sterical Hindered Amine, AMP Aqueous Solution (입체장애아민 AMP (2-amino 2-methyl 1-propanol) 수용액의 CO2 흡수평형)

  • Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.197-202
    • /
    • 2007
  • This research was basically carried out to extend the application of $CO_2$ absorption processes for flue-gas system, which are mainly applied to a reforming process in petro-chemical industries. In general, MEA absorbent has some problems in flue-gas treatment, such as, degradation, regeneration energy and absorption capacities. As we known, sterical hindered amine, typically AMP (2-amino 2-methyl 1-propanol), have a good potential to improve these problems. In this paper, the characteristics of $CO_2$ absorption in aqueous AMP solution were measured and compared with that of MEA. It has been found that the $CO_2$ absorption capacity in AMP is double than that of MEA in the low $CO_2$ partial pressure system such as flue-gas. Also, the equilibriums of $CO_2$-AMP system were partially suggested, which are essentially needed to design the absorption process.

A Study of NOx Removal in Flue Gas by Selective Catalytic Reduction (선택적 촉매환원법에 의한 배기가스중 NOx 저감에 관한 연구)

  • 박해경;김경림;최병선;이인철;최익수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.38-46
    • /
    • 1988
  • NOx is an important air pollution material which is generated when fossil fuels are burning, NOx removal in flue gas by selective catalytic reduction was studied over various catalysts in a fixed bed continuous flow reactor. The ranges of experimental conditions were at the temperatures between $200^\circ$C and $350^\circ$C, the $NH_3/NOx$ mole ratios between 0.8 and 1.4, oxygen concentrations between 1.5% and 3% and the space velocities between 5, 000 $hr^-1$ and 12, 500 $hr^-1$. The efficiency of NOx removal in the ranges of experimental conditions was highest at the temp. of 300$^\circ$C, oxygen concentration of 2.5-2.6% and $NH_3/NOx$ mole ratios of 1.0-1.2. The catalyst with high activity for NOx removal in flue gas was found to be $MoO_3-V_2O_5/TiO_2$.

  • PDF

Adsorption characteristics of the zeolite for flue gas desulfurization (제올라이트의 아황산가스흡 ${\cdot}$ 탈착특성)

  • Park, Hyun-Hee;Mo, Se-Young
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.43-47
    • /
    • 2003
  • The desorption characteristics of NaY zeolite, of which Si/Al ratio is 2.36, was measured at 25${\circ}$C and 150${\circ}$C so as to be used practically as a adsorbent for separation of sulfur oxides from flue gas, for which adsorption and desorption cycles at 25${\circ}$C were repeated four times and that at 150${\circ}$C was done one time. As a result it took 30.8 at 150${\circ}$C and 164.1 minutes in average at 25${\circ}$C to reach equilibrium condition. It means that regeneration of the NaY zeolite can be done below 150${\circ}$C so that zeolite can be used for flue gas desulfurization.

Polymer Waste Incineration by Oxygen Enriched Combustion (사업장폐기물의 순산소 소각기술)

  • Han, In-Ho;Choi, Kwang-Ho;Choung, Jin-Woo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.132-139
    • /
    • 2000
  • Oxygen enriched incineration can increase the incineration capacity for wastes and dramatically reduce air pollutant emissions such as CO and dioxine by the allowing complete combustion of wastes in incinerator. Furthermore, this technology is proven to have many benefits including an energy-saving, cost-effective, and versatile application for diverse wastes compared with the conventional air incineration technology. The reduced pollutant emissions in flue gas and higher incineration efficiency are also available when the oxygen enriched air is used for the high temperature incineration systems. On the basis of the experimental results the oxygen enrichment system is successfully applied to the rotary kiln incinerator for industrial wastes. The oxygen enriched incineration system could be allowed more compact design of incinerator and flue gas treatment system due to both increasing incineration capacity and reducing flue gas volume. Therefore, oxygen enriched incineration technology is becoming highlighted in the waste incinerator which strongly require more stable efficiency and environmentally friendly and safe operationPut Abstract text here.

  • PDF

Numerical Analysis of Sintering Bed Combustion; Applying Supplying Gaseous Fuel and Flue Gas Recirculation Processes (소결 베드 연소 수치해석의 확장 - 가스 연료 주입 및 배가스 재순환 공정 적용)

  • Lee, Younghun;Yang, Won;Cho, Byungkook;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.9-13
    • /
    • 2012
  • In the iron ore sinter process, temperature distribution pattern in sintering bed is related with productivity and quality of sintered ore. Evenly heat distribution make the uniform quality of sintered ore but in normal operating condition, upper part of bed has lack of heat and scarce quality of sintered ore, thus yeild rate is decreased and productivity is diminished. Therefore, using the additional fuel for increasing quality and flue gas recirculation for increasing productivity are considered and effect of both processes are discussed.

  • PDF

Prevention of local overheating of a radiant tube heater (열처리용 복사튜브의 국부 과열 해소)

  • Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.119-125
    • /
    • 2004
  • Radiant tube heaters are widely used for indirect heating in heat treatment processes such as continuous annealing line(CAL) or continuous galvanizing line(CGL). Main issues for radiant tube are temperature uniformity, lifetime, thermal efficiency. To achieve higher heat release, the radiant tubes are fired at a higher fuel rate and therefore local overheating occur. A numerical simulation based on a commercial code FLUENT has been performed to investigate local overheating of radiant tube heaters. To minimize local overheating, the effects of radiating fins, flue gas recirculation(FGR), two-stage combustion were investigated. More uniform temperature distribution was achieved in the longitudinal direction within the tube with radiating fins and this contributed to increase the life of radiant tubes. Furthermore, the radiant tube with radiating fins was proven to be more efficient than the one without fins. The effects of flue gas recirculation and two stage combustion on the efficiency of the radiant tube were also considered and the results were presented.

  • PDF

Investigation on Flame Characteristics′ Variation by Flue Gas Recirculation and Fuel Injection Recirculation (산화제류 및 연료류 희석에 의한 화염특성변화에 대한 연구)

  • Han, Ji-Woong;Kum, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1625-1631
    • /
    • 2004
  • Investigation on Flue Gas Recirculation(FGR) flame and Fuel Injection Recirculation(FIR) flame was performed with numerical method. Quantitative Reaction Path Diagram(QRPD) is utilized to compare the different chemistry effects between FGR flame and FIR flame. In order to compare flamelets in various oxygen-enrichment conditions reasonably, the adiabatic flame temperature and Damkohler number were held fixed by modulating the amount of diluents to fuel and oxidizer stream and by varying global strain rate of flame respectively. Basic flame structures were compared and characteristics of CH$_4$ decomposition and NO formation were analyzed based on QRPD analysis between FGR flame and FIR flame.

Oxy-Fuel and Flue Gas Recirculation Combustion Technology: A Review (순산소 및 배가스 재순환 연소 기술)

  • Kim, Hyeon-Jun;Choi, Won-Young;Bae, Soo-Ho;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.729-753
    • /
    • 2008
  • Oxy-fuel combustion is a reliable way for the reduction of pollutants, the higher combustion efficiency and the separation of carbon dioxide. The review of recent research trends and the prospects of oxy-fuel combustion were presented. The difference in characteristics among oxy-fuel combustion, conventional air combustion, oxy-fuel combustion with flue gas recirculation (FGR) technique was investigated. Recent experiments of oxy-fuel combustion with/without FGR were surveyed in various ways which are optimized burner design, flame characteristics, the soot emission, the radiation effect, the NOx reduction and the corrosion of combustor. Numerical simulation is more important in oxy-fuel combustion because flame temperature is so high that conventional measurement devices have a restricted application. Equilibrium and non-equilibrium chemical reaction mechanisms for oxy-fuel combustion were investigated. Combustion models suitable for the numerical simulation of non-premixed oxy-fuel flame were surveyed.