• 제목/요약/키워드: Flue Gases

검색결과 110건 처리시간 0.031초

미연탄서를 제거한 플라이애쉬의 특성 (Propoerties of Beneficated Fly Ashes)

  • 이승헌;;;박정수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.613-618
    • /
    • 1999
  • This paper discuss the chemical, physical and mineral properties of classified fly ashes by electrostatic precipitator and calcinated fly ashes at 50$0^{\circ}C$. The electrostatic precipitator in coal fired power plant has a number of hopper in the direction of flue gases. The properties of fly ashes collected at each hopper in the electrostatic precipitator are different. Superfine, fine and ordinary fly ashes can be collected respectively at each hopper. The carbon content in fly ash is influenced on the viscosity of paste. By calcination, the carbon content in fly ash is decreased and the fluidity of paste is improved.

  • PDF

촉매필터를 이용한 먼지 및 질소산화물 동시제거기술 (Removal of NO and Particulate Form Flue Gases was Investigated through the Catalytic Filter)

  • 심우정;정순관;박영옥;이진홍
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 추계학술대회 논문집
    • /
    • pp.402-402
    • /
    • 2003
  • 대기오염은 최근 야기된 문제가 아니고 인류가 화석연료를 사용하면서 발생되었으며, 산업발달 과정에서 대기오염에 의한 많은 대형재해가 발생하였다. 최근에는 대기오염이 국지적인 문제가 아니라 국가 간의 심각한 사회적 문제로 대두되면서 대기오염 물질에 대한 법적 규제치는 급속도로 강화되고 있으며, 농도규제에서 총량규제로 전환되고 있는 과정에 있다. (중략)

  • PDF

연소장치에서의 수은의 화학물리적 특성에 관한 연구와 발생 및 배출의 최소화 기술 개발 (STUDY OF MERCURY KINETICS AND CONTROL METHODOLOGIES IN SIMULATED COMBUSTION FLUE GASES)

  • 이태규
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2001년도 추계학술대회 논문집
    • /
    • pp.103-108
    • /
    • 2001
  • 각종 연소기반의 오염 배출원에서의 수은을 비롯한 중금속의 배출은 많은 우려를 낳고있다. 이미 미국에서는 1990년 Clean Air Act Amendments를 통해 11개의 중금속의 (As, Be, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb, and Se) 배출을 가장 효과적인 적용 가능한 기술로서 그 배출을 제어하도록 되어있다. 그 중에서도 특히 수은은 다른 중금속과는 달리 높은 휘발성, 강한 유해성, 그리고 체내에 축적이 되는 특성으로 해서 더욱 관심의 대상이 되고 있다. 또한 수은은 연소장치에서 대기중으로 배출시 다른 중금속이 입자의 형태로 배출되는 것과는 달리 주로 원소상태의 기체로 배출되는 것으로 알려져 있다. (중략)

  • PDF

Combined De-NOx Process with $NH_3$ SCR and Non-thermal Plasma Process for Removing NOx and Soot from Diesel Exhaust Gases

  • Chung, Kyung-Yul;Song, Young-Hoon;Oh, Sang-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.657-665
    • /
    • 2003
  • Combined De-NOx Process in which $NH_3$ SCR (Selective Catalytic Reduction) and non-thermal Plasma Process are simultaneously used, has been investigated with a pilot test facility. The pilot test facility treats the combustion flue gases exhausted from a diesel engine that generates 240 kW of electrical power. Test results show that up to 80 % of NOx (NO and NO2) can be removed at 100 - $200^{\circ}C$. None of conventional De-NOx techniques works under such low temperature range. In addition to NOx. the Pilot test results show that soot can be simultaneously treated with the present non-thermal plasma technique. The present pilot test shows that the electrical power consumption to operate the non-thermal plasma reactor is equivalent to 3 - 4 % of the electrical power generated by the diesel engine.

초고온융 공기예열식 열교환기의 개발 및 성능 평가 (The Development and Performance Evaluation of the Air-preheating Heat Exchanger for Ultra-high Temperature Applications)

  • 박용환
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.78-84
    • /
    • 1999
  • A compact air-preheating type heat exchanger was developed and tested for the ultra-high temperature heat recovery applications. For the direct use of exhaust gases up to $1200^{\circ}C$, the heat exchanger adopted a ceramic core with high strength and low thermal expansion coefficient less than $1{\times}10^{-6}^{\circ}C^{-1}$. The ceramic core was fabricated by special extrusion and bonding techniques. To minimize thermal stresses in the core, spring-loaded sealing mechanism was designed and successfully installed. 1-pass air flow scheme was adopted for the compactness and cost-savings. The pressure test for the ceramic core showed no failure under 35 kPa and less than 3% leak under 7 kPa. Flue gas simulation system was developed to investigate the performance of the heat exchanger. The test results showed normal operations of the heat exchanger up to $1200^{\circ}C$ of exhaust gases and relatively high heat recovery efficiencies of 31~39% depending upon exhaust gas temperatures..

  • PDF

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • 청정기술
    • /
    • 제2권2호
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구 (Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry)

  • 김정식;안정률
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

화력발전용 가스재열기의 응력 해석 (Stress Analysis of Gas-Gas Heater in Thermal Power Plant)

  • 황석환;최재승;이후광
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.204-211
    • /
    • 2002
  • Today\`s industrialized plants are required to reduce SOx emitted from stacks at factories, utility power stations, etc. For this purpose, flue gas desulfurization(FGD) system is installed in thermal power plant and gas-gas heater(GGH) is used to play a vital role to reheat the wet treated gas from FGD. The sector plates are located at cold and hot sides of gas-gas heater. They serve as sealing to prevent mixing treated and untreated gases. Therefore, the deformation of the sector plate due to its dead weight and gas pressure should be considered as major factor for the sector plate design. And finite element analysis(FEA) for rotor part in GGH is performed with original model and two weight-reduced models with different diaphragm thickness, respectively. Stress concentrations at rotor diaphragm happen due to the dead weight, pressure difference between treated and untreated gas, and thermal distribution in the rotor. As the thickness of diaphragm is decreased, the stress level is increased. The direction of treated gas and untreated gas flow may affect the stress level.

Piperazine으로 함침된 활성탄의 이산화탄소 흡착 특성 (Adsorption Characteristic of Carbon Dioxide on Activated Carbon Impregnated with Piperazine)

  • 최성우
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.847-853
    • /
    • 2013
  • Functionalized adsorbent has been synthesized by piperazine(Pz) on activated carbon. Quantitative estimations of $CO_2$ were undertaken using gas chromatography with GC/TCD and the prepared adsorbents were characterized by BET surface area and FT-IR. It was also studied effect of various parameters such as piperazine loadings and adsorption temperature. The specific surface area decreased from $1212.0m^2/g$ to $969.8m^2/g$ by impregnation and FT-IR revealed a N-H functional group at about $1400cm^{-1}$ to $1700cm^{-1}$. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $50{\sim}100^{\circ}C$ was as follow: AC > Pz(10)-AC> Pz(30)-AC> Pz(50)-AC at $20^{\circ}C$ and Pz(10)-AC > AC > Pz(30)-AC> Pz(50)-AC at $50{\sim}100^{\circ}C$. Therefore, for high temperature flue gas condition, the Pz(10)-AC showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. The results suggest that activated carbon impregnated with Pz is an effective adsorbent for $CO_2$ capture from real flue gases above $50^{\circ}C$.

제철 산업부산물인 석회석 슬러지의 배연탈황 공정 적용에 관한 연구 (A Study on the Application Limestone Sludge to the Flue Gas Desulfurization Process)

  • 서성관;추용식;심광보;이종규;송훈;윤영민
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.575-583
    • /
    • 2014
  • The flue gas desulfurization (FGD) process is currently the most effective process utilized to remove sulfur dioxide from stack gases of coal-fired plants. However, FGD systems use a lot of limestone as desulfurizing agent. In this study, we use limestone sludge, which is a by-product of the steel industry, to replace the desulfurizing agent of the FGD system. The limestone particle size is found to be unrelated to the desulfurizing rate; the gypsum purity, however, is related. Limestone sludge mixes with limestone slurry delivered at a constant rate in a desulfurizing agent with organic acid are expected to lead to a high desulfurization efficiency and high quality by-product (gypsum).