• Title/Summary/Keyword: Fluctuation strength

Search Result 139, Processing Time 0.024 seconds

Influence of the random fluctuation in grating period on the Coupling Coefficient of QWS-DFB Lasers (회절격자 주기의 랜덤 변이가 QWS-DFB 레이저의 정규화된 결합계수에 미치는 영향)

  • Ha, Seon-Yong;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.624-633
    • /
    • 2001
  • Influence of the grating half-period fluctuation on the normalized coupling coefficient has been studied by an effective index transfer matrix method in quarter wavelength shifted(QWS) DFB lasers. The laser facets are assumed to be perfectly antireflection coated, and the period fluctuation is modeled by two correlated Gaussian random variables. In the presence of the random fluctuation in the grating period, effective normalized coupling coefficient is reduced because the in-phase feedback strength Is weakened. We have shown that the normalized coupling coefficient determined from the side mode spacing is less than the effective coupling coefficient, and the normalized coupling coefficient determined from the mode spacing or spontaneous emission spectrum does not properly represent the feedback strength of the grating.

  • PDF

Psychological and Physiological Responses to the Rustling Sounds of Korean Traditional Silk Fabrics

  • Cho, Soo-Min;Yi, Eun-Jou;Cho, Gil-Soo
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.450-456
    • /
    • 2006
  • The objectives of this study were to investigate physiological and psychological responses to the rustling sound of Korean traditional silk fabrics and to figure out objective measurements such as sound parameters and mechanical properties determining the human responses. Five different traditional silk fabrics were selected by cluster analysis and their sound characteristics were observed in terms of FFT spectra and some calculated sound parameters including level pressure of total sound (LPT), Zwicker's psychoacoustic parameters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z), and sound color factors such as ${\Delta}L\;and\;{\Delta}f$. As physiological signals, the ratio of low frequency to high frequency (LF/HF) from the power spectrum of heart rate variability, pulse volume (PV), heart rate (HR), and skin conductance level (SCL) evoked by the fabric sounds were measured from thirty participants. Also, seven aspects of psychological state including softness, loudness, sharpness, roughness, clearness, highness, and pleasantness were evaluated when each sound was presented. The traditional silk fabric sounds were likely to be felt as soft and pleasant rather than clear and high, which seemed to evoke less change of both LF/HF and SCL indicating a negative sensation than other fabrics previously reported. As fluctuation strength(Z) were higher and bending rigidity (B) values lower, the fabrics tended to be perceived as sounding softer, which resulted in increase of PV changes. The higher LPT was concerned with higher rating for subjective loudness so that HR was more increased. Also, compression linearity (LC) affected subjective pleasantness positively, which caused less changes of HR. Therefore, we concluded that such objective measurements as LPT, fluctuation strength(Z), bending rigidity (B), and compression linearity (LC) were significant factors affecting physiological and psychological responses to the sounds of Korean traditional silk fabrics.

Numerical Analysis of the Unsteady Pressure fluctuation Generated from the Interaction between a Vortex Flow with a Forward Step (와류와 전향계단의 상호작용에 의한 비정상 벽면압력 변동의 수치해석)

  • 유기완;이준신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow and the edge are studied numerically. The vertical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential fields. To investigate the effects of the edge shape the rectangular forward step is chamfered wish various angles. Calculation shows that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vertex height and its strength. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

Modelling of Rock Joint Shear Strength Using Surface Roughness Parameter, Rs (표면 거칠기 계수 Rs를 이용한 암석 절리면 전단강도 모델)

  • 이석원;배석일;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.73-80
    • /
    • 2001
  • The shear strength of jointed rock is influenced by effective normal stress, joint wall compressive strength, joint roughness and so on. Since joint roughness makes considerable influences on shear strength of jointed rock, many studies tried to get quantitative joint roughness parameter. Until now, Joint Roughness Coefficient, JRC proposed by Barton has been prevalently used as a rock joint roughness parameter In spite of its disadvantages. In this study, a quantification of rock joint roughness is performed using surface roughness parameter, Rs. Proposed method is applied to rock core specimens, field joint surfaces, and JRC profiles. The scale of fluctuation is introduced to extend the suggested method to the large scale field joint surface roughness. Based on the quantification of joint surface roughness, joint shear tests are performed with the portable shear box. The relationship between joint surface roughness and joint shear strength is investigated and finally, a rock joint shear strength equation is derived from these results. The equation has considerable credibility and originality in that it is obtained from laboratory tests and expressed with quantified parameter.

  • PDF

Recent Trends of Coated Sheet Steels for Automotive use

  • Moon, Man-Been
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.37-42
    • /
    • 2012
  • Recent issues in the automotive industries are, improvement of fuel efficiency according to the worldwide $CO_2$ regulation, passenger safety through enhanced crashworthiness, superior design and cost reduction due to price fluctuation of raw material. To meet these demands, steelmaking companies are developing advanced high strength steel and new process technologies such as hydroforming, TWB(Tailor Welded Blank), hot stamping and so on. In addition, eco-friendly and high corrosion resistant coating technologies are getting more attention to comply with the environmental regulations. In this paper, reviews and prospects of recent coating technologies for automotive use are presented.

Theoretical Examination of the Effects of Fluctuation of Acoustic Scattering on the Swimming Behavior of Giant Jellyfish (유영행동에 따른 대형 해파리의 음향산란 변동의 이론적 검토)

  • Lee, You-Won;Hwang, Bo-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • Recently, wide spread distribution of the giant jellyfish, Nemopilema nomurai, has occurred in the East China Sea. This increased distribution has caused serious problems in inshore and offshore fisheries in Korea and Japan. As a result, it is necessary to evaluate the damage caused to the fisheries by jellyfish. Accordingly, several hydroacoustic studies have been conducted to estimate the target strength (TS) of the giant jellyfish. However, the effects of fluctuation in the acoustic scattering characteristics on swimming patterns have not yet been elucidated. Therefore, in this study, we theoretically estimated the effects of changes in the acoustic scattering pattern on the swimming behavior of jellyfish using the Distorted Wave Born Approximation (DWBA) model. The results confirmed that acoustic scattering of jellyfish results in a significant change in their swimming pattern. Specifically, our theoretical estimation indicated that the TS of giant jellyfish (d=40 cm) fluctuated until 8.5 dB at 38 kHz, 13.8 dB at 70 kHz, and 15.1 dB at 120 kHz based on changes in their swimming patterns.

Sound Characteristics according to Cross-sectional Shapes of Fibers

  • Kim, Chunjeong;Cho, Gilsoo;Hong, Kyoung A.;Shim, Hyun Joo
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.199-203
    • /
    • 2003
  • In order to investigate the effects of cross-sectional shapes on the sound characteristics of polyester fibers, 10 specimens were woven into a twill structure made of round, hollow, triangular, u-shape, cruciform, and composite cross-sectional (▲/▲ ,()/▲, Y/Y) fibers. Their rustling sounds were recorded, and their sound spectra were obtained from FFT analysis. Physical sound parameters (LPT, ΔL, Δf) and Zwicker's psychoacoustic parameters of the loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated from the sound spectra. According to noncircular cross-section fibers, the hollow shaped fiber had the highest value of LPT, ΔL, loudness(Z), and fluctuation strength(Z). The triangular shaped fiber had a lower value of LPT, ΔL, loudness(Z), and roughness(Z) than those of the round shaped fiber. Among composite cross-section fibers, C1(▲/▲) and C3 (Y/Y) had higher values of LPT, ΔL, Δf and loudness(Z) but C2(()/▲) had lower values. Also the LPT, ΔL, sharpness(Z), and roughness(Z) values of different denier were similar to each other, but the Δf and loudness(Z) values increased as the denier increased.

Design Optimization by the Correlation between the Design Parameter and the Sound Quality of Small Turbo-fan (소형 터보홴 설계인자와 음질의 상관관계에 의한 설계 최적화)

  • Kim, Hooi-Joong;Jung, Young-Gyu;Lee, Jung-Soo;Lee, Seung-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.485-494
    • /
    • 2006
  • The state-of-the-art of low-noise fan design usually includes the consideration of optimal sound level and sound quality. The influential design parameters of the noise level by the centrifugal fan were selected based on the preliminary test. The centrifugal fans were designed according to the experiment plan method by specifying the selected design parameters. The experiment with these machined mock-up's of centrifugal impellers suggested the major design parameters among many, having impacts upon the indices of sound quality (e.g. loudness, sharpness, roughness and fluctuation strength) at the same operation point. With the response surface method, the major design parameters selected thereafter were analyzed to estimate each contribution upon the sound quality of the centrifugal fan, and the optimal values were drawn by the consideration of the sound quality levels and their regression equations. In addition, the validity of the regression equations was numerically verified by means of the coefficient of determination. Furthermore, the mechanism by which the centrifugal fan impeller influences the determinants of its sound quality was suggested.

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.

Analysis fo the Rock Joint Strength Characteristics Using New Rock Joint Roughness Quantification Method (암석의 절리면 거칠기 정량화 기법 개발을 통한 절리면 전단강도 특성 분석)

  • 이인모;홍은수;배석일;이석원
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.229-238
    • /
    • 2002
  • This paper introduces the surface roughness parameter, Rs to the characterization of joint roughness and quantitatively illustrates the influence of joint roughness on the joint shear strength. A new peak shear strength criterion for rock joints using Rs is suggested. The results show that the surface roughness parameter, Rs can appropriately reflect the degree of roughness for the rock joint surfaces tested in this study A measuring interval of 2mm and profile length of 5cm can be used to characterize the joint roughness of the rock core size surfaces; however, the scale of fluctuation, $\delta_\alpha$ should be considered to extend the surface roughness parameter, Rs to the large-scale field rock joint surfaces. For the smooth joint roughness, sliding of the rock cores is the principal shear mechanism; however, the breakage of roughness from the rock cores is inferred for rougher joint roughness.